Do you want to publish a course? Click here

Identifying High Metallicity M Giants at Intragroup Distances with SDSS

163   0   0.0 ( 0 )
 Added by Lauren Palladino
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tidal stripping and three-body interactions with the central supermassive black hole may eject stars from the Milky Way. These stars would comprise a set of `intragroup stars that trace the past history of interactions in our galactic neighborhood. Using the Sloan Digital Sky Survey DR7, we identify candidate solar metallicity red giant intragroup stars using color cuts that are designed to exclude nearby M and L dwarfs. We present 677 intragroup candidates that are selected between 300 kpc and 2 Mpc, and are either the reddest intragroup candidates (M7-M10) or are L dwarfs at larger distances than previously detected.



rate research

Read More

Using a spectroscopically confirmed sample of M-giants, M-dwarfs and quasars from the LAMOST survey, we assess how well WISE $&$ 2MASS color-cuts can be used to select M-giant stars. The WISE bands are very efficient at separating M-giants from M-dwarfs and we present a simple classification that can produce a clean and relatively complete sample of M-giants. We derive a new photometric relation to estimate the metallicity for M-giants, calibrated using data from the APOGEE survey. We find a strong correlation between the $(W1-W2)$ color and $rm [M/H]$, where almost all of the scatter is due to photometric uncertainties. We show that previous photometric distance relations, which are mostly based on stellar models, may be biased and devise a new empirical distance relation, investigating trends with metallicity and star formation history. Given these relations, we investigate the properties of M-giants in the Sagittarius stream. The offset in the orbital plane between the leading and trailing tails is reproduced and, by identifying distant M-giants in the direction of the Galactic anti-center, we confirm that the previously detected debris in the outer halo is the apocenter of the trailing tail. We also find tentative evidence supporting an existing overdensity near the leading tail in the Northern Galactic hemisphere, possibly an extension to the trailing tail (so-called Branch C). We have measured the metallicity distribution along the stream, finding a clear metallicity offset between the leading and trailing tails, in agreement with models for the stream formation. We include an online table of M-giants to facilitate further studies.
We used the ugr magnitudes of 1,437,467 F-G type main-sequence stars with metal abundance -2<[Fe/H]<+0.2 dex and estimated radial and vertical metallicity gradients for high Galactic-latitude fields (b>50) of the Milky Way Galaxy. The radial metallicity gradient d[Fe/H]/dR=-0.042(0.011) dex/kpc estimated for the stars with 1.31<z<=1.74 kpc is attributed to the thin-disc population. While, the radial gradients evaluated for stars at higher vertical distances are close to zero indicating that the thick disc and halo have not undergone a radial collapse phase at least at high Galactic latitudes. The vertical metallicity gradients estimated for stars with three different Galactic latitudes, 50<b <=65, 65<b<=80 and 80<b<=90 do not show a strong indication for Galactic latitude dependence of our gradients. The thin disc, 0.5<z<=2 kpc, with a vertical metallicity gradient d[Fe/H]/dz= -0.308(0.018) dex/kpc, is dominant only in galactocentric distance (R) interval 6<R<=10 kpc, while the thick disc (2<z<=5 kpc) could be observed in the intervals 6<R<=10 and 10<R<=15 kpc with compatible vertical metallicity gradients, i.e. d[Fe/H]/dz= -0.164(0.014) dex/kpc and d[Fe/H]/dz= -0.172(0.016) dex/kpc. Five vertical metallicity gradients are estimated for the halo (z>5 kpc) in three R distance intervals, 6<R<=10, 10<R<=15 and 15<R<=20 kpc. The first one corresponding to the interval 6<R<=10 kpc is equal to d[Fe/H]/dz= -0.023(0.006) dex/kpc, while the others at larger R distances are close to zero. We derived synthetic vertical metallicity gradients for 2,230,167 stars and compared them with the observed ones. There is a good agreement between the two sets of vertical metallicity gradients for the thin disc, while they are different for the thick disc. For the halo, the conspicuous difference corresponds to the R distance interval 6<R<=10 kpc, while they are compatible at higher R distance intervals.
Evolved stars near the tip of the red giant branch (TRGB) show solar-like oscillations with periods spanning hours to months and amplitudes ranging from $sim$1 mmag to $sim$100 mmag. The systematic detection of the resulting photometric variations with ground-based telescopes would enable the application of asteroseismology to a much larger and more distant sample of stars than is currently accessible with space-based telescopes such as textit{Kepler} or the ongoing Transiting Exoplanet Survey Satellite (textit{TESS}) mission. We present an asteroseismic analysis of 493 M giants using data from two ground-based surveys: the Asteroid Terrestrial-impact Last Alert System (ATLAS) and the All-Sky Automated Survey for Supernovae (ASAS-SN). By comparing the extracted frequencies with constraints from textit{Kepler}, the Sloan Digital Sky Survey Apache Point Observatory Galaxy Evolution Experiment (APOGEE), and Gaia we demonstrate that ground-based transient surveys allow accurate distance measurements to oscillating M giants with a precision of $sim$15$%$. Using stellar population synthesis models we predict that ATLAS and ASAS-SN can provide asteroseismic distances to $sim$2$times$10$^{6}$ galactic M giants out to typical distances of $20-50 ; rm{kpc}$, vastly improving the reach of Gaia and providing critical constraints for Galactic archaeology and galactic dynamics.
We present results from the largest CaII triplet line metallicity study of Small Magellanic Cloud (SMC) field red giant stars to date, involving 3037 objects spread across approximately 37.5 sq. deg., centred on this galaxy. We find a median metallicity of [Fe/H]=-0.99+/-0.01, with clear evidence for an abundance gradient of -0.075+/-0.011 dex / deg. over the inner 5 deg. We interpret the abundance gradient to be the result of an increasing fraction of young stars with decreasing galacto-centric radius, coupled with a uniform global age-metallicity relation. We also demonstrate that the age-metallicity relation for an intermediate age population located 10kpc in front of the NE of the Cloud is indistinguishable from that of the main body of the galaxy, supporting a prior conjecture that this is a stellar analogue of the Magellanic Bridge. The metal poor and metal rich quartiles of our RGB star sample (with complementary optical photometry from the Magellanic Clouds Photometric Survey) are predominantly older and younger than approximately 6Gyr, respectively. Consequently, we draw a link between a kinematical signature, tentatively associated by us with a disk-like structure, and the upsurges in stellar genesis imprinted on the star formation history of the central regions of the SMC. We conclude that the increase in the star formation rate around 5-6Gyr ago was most likely triggered by an interaction between the SMC and LMC.
The largest stellar halos in the universe are found in massive galaxy clusters, where interactions and mergers of galaxies, along with the cluster tidal field, all act to strip stars from their host galaxies and feed the diffuse intracluster light (ICL) and extended halos of brightest cluster galaxies (BCGs). Studies of the nearby Virgo Cluster reveal a variety of accretion signatures imprinted in the morphology and stellar populations of its ICL. While simulations suggest the ICL should grow with time, attempts to track this evolution across clusters spanning a range of mass and redshift have proved difficult due to a variety of observational and definitional issues. Meanwhile, studies of nearby galaxy groups reveal the earliest stages of ICL formation: the extremely diffuse tidal streams formed during interactions in the group environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا