Do you want to publish a course? Click here

Information Forests

554   0   0.0 ( 0 )
 Added by Stefano Soatto
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

We describe Information Forests, an approach to classification that generalizes Random Forests by replacing the splitting criterion of non-leaf nodes from a discriminative one -- based on the entropy of the label distribution -- to a generative one -- based on maximizing the information divergence between the class-conditional distributions in the resulting partitions. The basic idea consists of deferring classification until a measure of classification confidence is sufficiently high, and instead breaking down the data so as to maximize this measure. In an alternative interpretation, Information Forests attempt to partition the data into subsets that are as informative as possible for the purpose of the task, which is to classify the data. Classification confidence, or informative content of the subsets, is quantified by the Information Divergence. Our approach relates to active learning, semi-supervised learning, mixed generative/discriminative learning.



rate research

Read More

Information-theoretic quantities, such as conditional entropy and mutual information, are critical data summaries for quantifying uncertainty. Current widely used approaches for computing such quantities rely on nearest neighbor methods and exhibit both strong performance and theoretical guarantees in certain simple scenarios. However, existing approaches fail in high-dimensional settings and when different features are measured on different scales.We propose decision forest-based adaptive nearest neighbor estimators and show that they are able to effectively estimate posterior probabilities, conditional entropies, and mutual information even in the aforementioned settings.We provide an extensive study of efficacy for classification and posterior probability estimation, and prove certain forest-based approaches to be consistent estimators of the true posteriors and derived information-theoretic quantities under certain assumptions. In a real-world connectome application, we quantify the uncertainty about neuron type given various cellular features in the Drosophila larva mushroom body, a key challenge for modern neuroscience.
Existing guarantees in terms of rigorous upper bounds on the generalization error for the original random forest algorithm, one of the most frequently used machine learning methods, are unsatisfying. We discuss and evaluate various PAC-Bayesian approaches to derive such bounds. The bounds do not require additional hold-out data, because the out-of-bag samples from the bagging in the training process can be exploited. A random forest predicts by taking a majority vote of an ensemble of decision trees. The first approach is to bound the error of the vote by twice the error of the corresponding Gibbs classifier (classifying with a single member of the ensemble selected at random). However, this approach does not take into account the effect of averaging out of errors of individual classifiers when taking the majority vote. This effect provides a significant boost in performance when the errors are independent or negatively correlated, but when the correlations are strong the advantage from taking the majority vote is small. The second approach based on PAC-Bayesian C-bounds takes dependencies between ensemble members into account, but it requires estimating correlations between the errors of the individual classifiers. When the correlations are high or the estimation is poor, the bounds degrade. In our experiments, we compute generalization bounds for random forests on various benchmark data sets. Because the individual decision trees already perform well, their predictions are highly correlated and the C-bounds do not lead to satisfactory results. For the same reason, the bounds based on the analysis of Gibbs classifiers are typically superior and often reasonably tight. Bounds based on a validation set coming at the cost of a smaller training set gave better performance guarantees, but worse performance in most experiments.
Decision forests (Forests), in particular random forests and gradient boosting trees, have demonstrated state-of-the-art accuracy compared to other methods in many supervised learning scenarios. In particular, Forests dominate other methods in tabular data, that is, when the feature space is unstructured, so that the signal is invariant to a permutation of the feature indices. However, in structured data lying on a manifold (such as images, text, and speech) deep networks (Networks), specifically convolutional deep networks (ConvNets), tend to outperform Forests. We conjecture that at least part of the reason for this is that the input to Networks is not simply the feature magnitudes, but also their indices. In contrast, naive Forest implementations fail to explicitly consider feature indices. A recently proposed Forest approach demonstrates that Forests, for each node, implicitly sample a random matrix from some specific distribution. These Forests, like some classes of Networks, learn by partitioning the feature space into convex polytopes corresponding to linear functions. We build on that approach and show that one can choose distributions in a manifold-aware fashion to incorporate feature locality. We demonstrate the empirical performance on data whose features live on three different manifolds: a torus, images, and time-series. Moreover, we demonstrate its strength in multivariate simulated settings and also show superiority in predicting surgical outcome in epilepsy patients and predicting movement direction from raw stereotactic EEG data from non-motor brain regions. In all simulations and real data, Manifold Oblique Random Forest (MORF) algorithm outperforms approaches that ignore feature space structure and challenges the performance of ConvNets. Moreover, MORF runs fast and maintains interpretability and theoretical justification.
Anomaly detection at scale is an extremely challenging problem of great practicality. When data is large and high-dimensional, it can be difficult to detect which observations do not fit the expected behaviour. Recent work has coalesced on variations of (random) $k$emph{d-trees} to summarise data for anomaly detection. However, these methods rely on ad-hoc score functions that are not easy to interpret, making it difficult to asses the severity of the detected anomalies or select a reasonable threshold in the absence of labelled anomalies. To solve these issues, we contextualise these methods in a probabilistic framework which we call the Mondrian Polya{} Forest for estimating the underlying probability density function generating the data and enabling greater interpretability than prior work. In addition, we develop a memory efficient variant able to operate in the modern streaming environments. Our experiments show that these methods achieves state-of-the-art performance while providing statistically interpretable anomaly scores.
This paper extends recent work on boosting random forests to model non-Gaussian responses. Given an exponential family $mathbb{E}[Y|X] = g^{-1}(f(X))$ our goal is to obtain an estimate for $f$. We start with an MLE-type estimate in the link space and then define generalised residuals from it. We use these residuals and some corresponding weights to fit a base random forest and then repeat the same to obtain a boost random forest. We call the sum of these three estimators a textit{generalised boosted forest}. We show with simulated and real data that both the random forest steps reduces test-set log-likelihood, which we treat as our primary metric. We also provide a variance estimator, which we can obtain with the same computational cost as the original estimate itself. Empirical experiments on real-world data and simulations demonstrate that the methods can effectively reduce bias, and that confidence interval coverage is conservative in the bulk of the covariate distribution.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا