Do you want to publish a course? Click here

Implementation of electroweak corrections in the POWHEG BOX: single W production

117   0   0.0 ( 0 )
 Added by Guido Montagna Prof
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We present a fully consistent implementation of electroweak and strong radiative corrections to single W hadroproduction in the POWHEG BOX framework, treating soft and collinear photon emissions on the same ground as coloured parton emissions. This framework can be easily extended to more complex electroweak processes. We describe how next-to-leading order (NLO) electroweak corrections are combined with the NLO QCD calculation, and show how they are interfaced to QCD and QED shower Monte Carlo. The resulting tool fills a gap in the literature and allows to study comprehensively the interplay of QCD and electroweak effects to W production using a single computational framework. Numerical comparisons with the predictions of the electroweak generator HORACE, as well as with existing results on the combination of electroweak and QCD corrections to W production, are shown for the LHC energies, to validate the reliability and accuracy of the approach



rate research

Read More

We present an implementation of the vector boson pair production processes ZZ, W+W- and WZ within the POWHEG BOX V2. This implementation, derived from the POWHEG BOX version, has several improvements over the old one, among which the inclusion of all decay modes of the vector bosons, the possibility to generate different decay modes in the same run, speed optimization and phase space improvements in the handling of interference and singly resonant contributions.
88 - Julien Baglio 2016
The study of the Higgs boson properties is one of the most important tasks to be accomplished in the next years, at the Large Hadron Collider (LHC) and at future colliders such as the Future Circular Collider in hadron-hadron mode (FCC-hh), the potential 100 TeV follow-up of the LHC machine. In this view the precise study of the Higgs couplings to weak gauge bosons is crucial and requires as much information as possible. After the recent calculation of the next-to-leading order QCD corrections to the production cross sections and differential distributions of a Standard Model Higgs boson in association with a pair of weak bosons, matched with parton shower in the POWHEG-BOX framework, we present the gluon fusion correction $g gto H W^+_{} W^-_{} ( H Z Z)$ to the process $p p to H W^+_{} W^-_{} (H Z Z)$. This correction can be sizeable and amounts to $+3,%$ ($+10,%$) in the $H W^+_{} W^-_{}$ process and $+5,%$ ($+18,%$) in the $H Z Z$ process at the LHC (FCC-hh). We also present the first study of the impact of the bottom--quark initiated channels $bbar{b}to H W^+_{} W^-_{} / H Z Z$ and find that they induce a significant $+18,%$ correction in the $H W^+_{} W^-_{}$ channel at the FCC-hh. We present results on total cross sections and distributions at the LHC and at the FCC-hh.
We present an implementation of electroweak W+W-jj production at hadron colliders in the POWHEG framework, a method that allows the interfacing of a next-to-leading order QCD calculation with parton shower Monte Carlo programs. We provide results for both, fully and semi-leptonic decay modes of the weak bosons, taking resonant and non-resonant contributions and spin correlations of the final-state particles into account. To illustrate the versatility of our implementation, we provide phenomenological results for two representative scenarios with a light and with a heavy Higgs boson, respectively, and in a kinematic regime of highly boosted gauge bosons. The impact of the parton shower is found to depend on the setup and the observable under investigation. In particular, distributions related to a central-jet veto are more sensitive to these effects. Therefore the impact of radiation by the parton shower on next-to-leading order predictions should be assessed carefully on a case-by-case basis.
287 - C. Bernaciak , D. Wackeroth 2012
The precision measurement of the mass of the $W$ boson is an important goal of the Fermilab Tevatron and the CERN Large Hadron Collider (LHC). It requires accurate theoretical calculations which incorporate both higher-order QCD and electroweak corrections, and also provide an interface to parton-shower Monte Carlo programs which make it possible to realistically simulate experimental data. In this paper, we present a combination of the full ${cal O}(alpha)$ electroweak corrections of {tt WGRAD2}, and the next-to-leading order QCD radiative corrections to $Wtoell u$ production in hadronic collisions in a single event generator based on the {tt POWHEG} framework, which is able to interface with the parton-shower Monte Carlo programs {tt Pythia} and {tt Herwig}. Using this new combined QCD+EW Monte Carlo program for $W$ production we provide numerical results for total cross sections and kinematic distributions of relevance to the $W$ mass measurement at the Tevatron and the LHC for the processes $pp,pbar p to W^pm to mu^pm u_mu$. In particular, we discuss the impact of EW corrections in the presence of QCD effects when including detector resolution effects.
Precision studies of the production of a high-transverse momentum lepton in association with missing energy at hadron colliders require that electroweak and QCD higher-order contributions are simultaneously taken into account in theoretical predictions and data analysis. Here we present a detailed phenomenological study of the impact of electroweak and strong contributions, as well as of their combination, to all the observables relevant for the various facets of the $psmartpap to {rm lepton} + X$ physics programme at hadron colliders, including luminosity monitoring and Parton Distribution Functions constraint, $W$ precision physics and search for new physics signals. We provide a theoretical recipe to carefully combine electroweak and strong corrections, that are mandatory in view of the challenging experimental accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC, and discuss the uncertainty inherent the combination. We conclude that the theoretical accuracy of our calculation can be conservatively estimated to be about 2% for standard event selections at the Tevatron and the LHC, and about 5% in the very high $W$ transverse mass/lepton transverse momentum tails. We also provide arguments for a more aggressive error estimate (about 1% and 3%, respectively) and conclude that in order to attain a one per cent accuracy: 1) exact mixed ${cal O}(alpha alpha_s)$ corrections should be computed in addition to the already available NNLO QCD contributions and two-loop electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be coherently included into a single event generator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا