Do you want to publish a course? Click here

Optimal Placement of Origins for DNA Replication

137   0   0.0 ( 0 )
 Added by Jens Karschau
 Publication date 2012
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

DNA replication is an essential process in biology and its timing must be robust so that cells can divide properly. Random fluctuations in the formation of replication starting points, called origins, and the subsequent activation of proteins lead to variations in the replication time. We analyse these stochastic properties of DNA and derive the positions of origins corresponding to the minimum replication time. We show that under some conditions the minimization of replication time leads to the grouping of origins, and relate this to experimental data in a number of species showing origin grouping.



rate research

Read More

We analyze the statistical properties of Poincare recurrences of Homo sapiens, mammalian and other DNA sequences taken from Ensembl Genome data base with up to fifteen billions base pairs. We show that the probability of Poincare recurrences decays in an algebraic way with the Poincare exponent $beta approx 4$ even if oscillatory dependence is well pronounced. The correlations between recurrences decay with an exponent $ u approx 0.6$ that leads to an anomalous super-diffusive walk. However, for Homo sapiens sequences, with the largest available statistics, the diffusion coefficient converges to a finite value on distances larger than million base pairs. We argue that the approach based on Poncare recurrences determines new proximity features between different species and shed a new light on their evolution history.
Many non-coding RNAs are known to play a role in the cell directly linked to their structure. Structure prediction based on the sole sequence is however a challenging task. On the other hand, thanks to the low cost of sequencing technologies, a very large number of homologous sequences are becoming available for many RNA families. In the protein community, it has emerged in the last decade the idea of exploiting the covariance of mutations within a family to predict the protein structure using the direct-coupling-analysis (DCA) method. The application of DCA to RNA systems has been limited so far. We here perform an assessment of the DCA method on 17 riboswitch families, comparing it with the commonly used mutual information analysis and with state-of-the-art R-scape covariance method. We also compare different flavors of DCA, including mean-field, pseudo-likelihood, and a proposed stochastic procedure (Boltzmann learning) for solving exactly the DCA inverse problem. Boltzmann learning outperforms the other methods in predicting contacts observed in high resolution crystal structures.
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment, and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of stiff equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.
Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are governed by the Chemical Master Equation. Despite its simple structure, no analytic solutions to the Chemical Master Equation are known for most systems. Moreover, stochastic simulations are computationally expensive, making systematic analysis and statistical inference a challenging task. Consequently, significant effort has been spent in recent decades on the development of efficient approximation and inference methods. This article gives an introduction to basic modelling concepts as well as an overview of state of the art methods. First, we motivate and introduce deterministic and stochastic methods for modelling chemical networks, and give an overview of simulation and exact solution methods. Next, we discuss several approximation methods, including the chemical Langevin equation, the system size expansion, moment closure approximations, time-scale separation approximations and hybrid methods. We discuss their various properties and review recent advances and remaining challenges for these methods. We present a comparison of several of these methods by means of a numerical case study and highlight some of their respective advantages and disadvantages. Finally, we discuss the problem of inference from experimental data in the Bayesian framework and review recent methods developed the literature. In summary, this review gives a self-contained introduction to modelling, approximations and inference methods for stochastic chemical kinetics.
In response to a concentration gradient of nutrient, E. coli bacterium modulates the rotational bias of flagellar motors which control its run-and-tumble motion, to migrate towards regions of high nutrient concentration. Presence of stochastic noise in the biochemical pathway of the cell has important consequence on the switching mechanism of motor bias, which in turn affects the runs and tumbles of the cell. We model the intra-cellular reaction network in terms of coupled time-evolution of three stochastic variables, kinase activity, methylation level and CheY-P protein level, and study the effect of methylation noise on the chemotactic performance of the cell. In presence of a spatially varying nutrient concentration profile, a good chemotactic performance allows the cell to climb up the concentration gradient fast and localize in the nutrient-rich regions in the long time limit. Our simulations show that the best performance is obtained at an optimal noise strength. While it is expected that chemotaxis will be weaker for very large noise, it is counter-intuitive that the performance worsens even when noise level falls below a certain value. We explain this striking result by detailed analysis of CheY-P protein level statistics for different noise strengths. We show that when the CheY-P level falls below a certain (noise-dependent) threshold, the cell tends to move down the concentration gradient of the nutrient, which has a detrimental effect on its chemotactic response. This threshold value decreases as noise is increased, and this effect is responsible for noise-induced enhancement of chemotactic performance. In a harsh chemical environment, when the nutrient degrades with time, the amount of nutrient intercepted by the cell trajectory, is an effective performance criterion. In this case also, we find an optimum noise strength, depending on the nutrient lifetime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا