Jammed Spheres: Minkowski Tensors Reveal Onset of Local Crystallinity


Abstract in English

The local structure of disordered jammed packings of monodisperse spheres without friction, generated by the Lubachevsky-Stillinger algorithm, is studied for packing fractions above and below 64%. The structural similarity of the particle environments to fcc or hcp crystalline packings (local crystallinity) is quantified by order metrics based on rank-four Minkowski tensors. We find a critical packing fraction phi_c approx 0.649, distinctly higher than previously reported values for the contested random close packing limit. At phi_c, the probability of finding local crystalline configurations first becomes finite and, for larger packing fractions, increases by several orders of magnitude. This provides quantitative evidence of an abrupt onset of local crystallinity at phi_c. We demonstrate that the identification of local crystallinity by the frequently used local bond-orientational order metric q_6 produces false positives, and thus conceals the abrupt onset of local crystallinity. Since the critical packing fraction is significantly above results from mean-field analysis of the mechanical contacts for frictionless spheres, it is suggested that dynamic arrest due to isostaticity and the alleged geometric phase transition in the Edwards framework may be disconnected phenomena.

Download