No Arabic abstract
In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually-selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 < z < 1.5, with each redshift spectroscopically-confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and ACS GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broad-band photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 11< log(M [Solar]) < 12. By transforming the observed photometry into the GALEX FUV and NUV, Johnson V, and SDSS g and r bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V)=3.5 and (NUV-V)=3.3, with 1$sigma$ standard deviations approximately equal to 1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star-formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent (<~50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star-formation episodes are activated, are discussed.
We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Ys), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 square arcmin at 0.2-1.7 {mu}m in wavelength at 0.07-0.15 FWHM resolution and 0.090 Multidrizzled pixels to depths of ABsimeq 26.0-27.0 mag (5-{sigma}) for point sources, and ABsimeq 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used; and c) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.07-0.15 FWHM resolution of HST/WFC3 and ACS makes star- galaxy separation straightforward over a factor of 10 in wavelength to ABsimeq 25-26 mag from the UV to the near-IR, respectively.
We present results on the size evolution of passively evolving galaxies at 1<z<2 drawn from the Wide Field Camera 3 Early Release Science program. Our sample was constructed using an analog to the passive BzK selection criterion, which isolates galaxies with little or no on-going star formation at z>1.5. We identify 30 galaxies in ~40 square arcmin to H<25 mag. We supplement spectroscopic redshifts from the literature with photometric redshifts determined from the 15-band photometry from 0.22-8 micron. We determine effective radii from Sersic profile fits to the H-band image using an empirical PSF. We find that size evolution is a strong function of stellar mass, with the most massive (M* ~ 10^11 Msol) galaxies undergoing the most rapid evolution from z~2 to the present. Parameterizing the size evolution as (1+z)^{-alpha}, we find a tentative scaling between alpha and stellar mass of alpha ~ -1.8+1.4 log(M*/10^9 Msol). We briefly discuss the implications of this result for our understanding of the dynamical evolution of the red galaxies.
We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope to determine the Hubble constant (H0) from optical and infrared observations of over 600 Cepheid variables in the host galaxies of 8 recent Type Ia supernovae (SNe Ia), providing the calibration for a mag-z relation of 253 SNe Ia. Increased precision over past measurements comes from: (1) more than doubling the number of infrared observations of Cepheids in nearby SN hosts; (2) increasing the sample of ideal SN Ia calibrators from six to eight; (3) increasing by 20% the number of Cepheids with infrared observations in the megamaser host NGC 4258; (4) reducing the difference in the mean metallicity of the Cepheid comparison samples from Delta log [O/H] = 0.08 to 0.05; and (5) calibrating all optical Cepheid colors with one camera, WFC3, to remove cross-instrument zero-point errors. Uncertainty in H0 from beyond the 1st rung of the distance ladder is reduced from 3.5% to 2.3%. The measurement of H0 via the geometric distance to NGC 4258 is 74.8 pm 3.1 km s- 1 Mpc-1, a 4.1% measurement including systematics. Better precision independent of NGC 4258 comes from two alternative Cepheid absolute calibrations: (1) 13 Milky Way Cepheids with parallaxes and (2) 92 Cepheids in the Large Magellanic Cloud with multiple eclipsing binary distances, yielding 74.4 pm 2.5 km s- 1 Mpc-1, a 3.4% uncertainty with systematics. Our best estimate uses all three calibrations but a larger uncertainty afforded from any two: H0 = 73.8 pm 2.4 km s- 1 Mpc-1 including systematics, a 3.3% uncertainty. The improvement in H0, combined with WMAP7yr data, results in a constraint on the EOS parameter of dark energy of w = -1.08 pm 0.10 and Neff = 4.2 pm 0.7 for the number of relativistic species in the early universe. It also rules out the best-fitting gigaparsec-scale void models, posited as an alternative to dark energy. (abridged)
We present grism spectra of emission-line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 micron grism data in GOODS-South from the PEARS program, extending the wavelength covereage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the Ha, [OIII], and [OII] emission lines detected in the redshift ranges 0.2<z<1.4, 1.2<z<2.2 and 2.0<z<3.3 respectively in the G102 (0.8-1.1 microns; R~210) and G141 (1.1-1.6 microns; R~130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [SII] and [SIII] lines). From these relatively shallow observations, line luminosities, star-formation rates, and grism spectroscopic redshifts are determined for a total of 48 ELGs to m(AB)~25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Delta(z)~0.3-0.5). Additionally, one galaxy had no previously-measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m(AB)=26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z>2.
We obtained Hubble Space Telescope/Wide Field Camera 3 imaging of a sample of ten of the nearest and brightest nuclear clusters residing in late-type spiral galaxies, in seven bands that span the near-ultraviolet to the near-infrared. Structural properties of the clusters were measured by fitting two-dimensional surface brightness profiles to the images using GALFIT. The clusters exhibit a wide range of structural properties. For six of the ten clusters in our sample, we find changes in the effective radius with wavelength, suggesting radially varying stellar populations. In four of the objects, the effective radius increases with wavelength, indicating the presence of a younger population which is more concentrated than the bulk of the stars in the cluster. However, we find a general decrease in effective radius with wavelength in two of the objects in our sample, which may indicate extended, circumnuclear star formation. We also find a general trend of increasing roundness of the clusters at longer wavelengths, as well as a correlation between the axis ratios of the NCs and their host galaxies. These observations indicate that blue disks aligned with the host galaxy plane are a common feature of nuclear clusters in late-type galaxies, but are difficult to detect in galaxies that are close to face-on. In color-color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for multi-age populations. Most of the clusters have integrated colors consistent with a mix of an old population (> 1 Gyr) and a young population (~100-300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only.