No Arabic abstract
We propose a simple scheme to construct composition-dependent interatomic potentials for multicomponent systems that when superposed onto the potentials for the pure elements can reproduce not only the heat of mixing of the solid solution in the entire concentration range but also the energetics of a wider range of configurations including intermetallic phases. We show that an expansion in cluster interactions provides a way to systematically increase the accuracy of the model, and that it is straightforward to generalise this procedure to multicomponent systems. Concentration-dependent interatomic potentials can be built upon almost any type of potential for the pure elements including embedded atom method (EAM), modified EAM, bond-order, and Stillinger-Weber type potentials. In general, composition-dependent N-body terms in the total energy lead to explicit (N+1)-body forces, which potentially renders them computationally expensive. We present an algorithm that overcomes this problem and that can speed up the calculation of the forces for composition-dependent pair potentials in such a way as to make them computationally comparable in efficiency and scaling behaviour to standard EAM potentials. We also discuss the implementation in Monte-Carlo simulations. Finally, we exemplarily review the composition-dependent EAM model for the Fe-Cr system [PRL 95, 075702 (2005)].
Availability of affordable and widely applicable interatomic potentials is the key needed to unlock the riches of modern materials modelling. Artificial neural network based approaches for generating potentials are promising; however neural network training requires large amounts of data, sampled adequately from an often unknown potential energy surface. Here we propose a self-consistent approach that is based on crystal structure prediction formalism and is guided by unsupervised data analysis, to construct an accurate, inexpensive and transferable artificial neural network potential. Using this approach, we construct an interatomic potential for Carbon and demonstrate its ability to reproduce first principles results on elastic and vibrational properties for diamond, graphite and graphene, as well as energy ordering and structural properties of a wide range of crystalline and amorphous phases.
Interatomic potentials (IPs) are reduced-order models for calculating the potential energy of a system of atoms given their positions in space and species. IPs treat atoms as classical particles without explicitly modeling electrons and thus are computationally far less expensive than first-principles methods, enabling molecular simulations of significantly larger systems over longer times. Developing an IP is a complex iterative process involving multiple steps: assembling a training set, designing a functional form, optimizing the function parameters, testing model quality, and deployment to molecular simulation packages. This paper introduces the KIM-based learning-integrated fitting framework (KLIFF), a package that facilitates the entire IP development process. KLIFF supports both analytic and machine learning IPs. It adopts a modular approach whereby various components in the fitting process, such as atomic environment descriptors, functional forms, loss functions, optimizers, quality analyzers, and so on, work seamlessly with each other. This provides a flexible framework for the rapid design of new IP forms. Trained IPs are compatible with the Knowledgebase of Interatomic Models (KIM) application programming interface (API) and can be readily used in major materials simulation packages compatible with KIM, including ASE, DL_POLY, GULP, LAMMPS, and QC. KLIFF is written in Python with computationally intensive components implemented in C++. It is parallelized over data and supports both shared-memory multicore desktop machines and high-performance distributed memory computing clusters. We demonstrate the use of KLIFF by fitting an analytic Stillinger--Weber potential and a machine learning neural network potential for silicon. The KLIFF package, together with its documentation, is publicly available at: https://github.com/openkim/kliff.
The composition-dependent behavior of the Dzyaloshinskii-Moriya interaction (DMI), the spin-orbit torque (SOT), as well as anomalous and spin Hall conductivities of Mn$_{1-x}$Fe$_x$Ge alloys have been investigated by first-principles calculations using the relativistic multiple scattering Korringa-Kohn-Rostoker (KKR) formalism. The $D_{rm xx}$ component of the DMI exhibits a strong dependence on the Fe concentration, changing sign at $x approx 0.85$ in line with previous theoretical calculations as well as with experimental results demonstrating the change of spin helicity at $x approx 0.8$. A corresponding behavior with a sign change at $x approx 0.5$ is predicted also for the Fermi sea contribution to the SOT, as this is closely related to the DMI. In the case of anomalous and spin Hall effects it is shown that the calculated Fermi sea contributions are rather small and the composition-dependent behavior of these effects are determined mainly by the electronic states at the Fermi level. The spin-orbit-induced scattering mechanisms responsible for both these effects suggest a common origin of the minimum of the AHE and the sign change of the SHE conductivities.
The generalized stacking fault energy is a key ingredient to mesoscale models of dislocations. Here we develop an approach to quantify the dependence of generalized stacking fault energies on the degree of chemical disorder in multicomponent alloys. We introduce the notion of a configurationally-resolved planar fault (CRPF) energy and extend the cluster expansion method from alloy theory to express the CRPF as a function of chemical occupation variables of sites surrounding the fault. We apply the approach to explore the composition and temperature dependence of the unstable stacking fault energy (USF) in binary Mo-Nb alloys. First-principles calculations are used to parameterize a formation energy and CRPF cluster expansion. Monte Carlo simulations show that the distribution of USF energies is significantly affected by chemical composition and temperature. The formalism can be applied to any multicomponent alloy and will enable the development of rigorous models for deformation mechanisms in high-entropy alloys.
Recent application of neural networks (NNs) to modeling interatomic interactions has shown the learning machines encouragingly accurate performance for select elemental and multicomponent systems. In this study, we explore the possibility of building a library of NN-based models by introducing a hierarchical NN training. In such a stratified procedure NNs for multicomponent systems are obtained by sequential training from the bottom up: first unaries, then binaries, and so on. Advantages of constructing NN sets with shared parameters include acceleration of the training process and intact description of the constituent systems. We use an automated generation of diverse structure sets for NN training on density functional theory-level reference energies. In the test case of Cu, Pd, Ag, Cu-Pd, Cu-Ag, Pd-Ag, and Cu-Pd-Ag systems, NNs trained in the traditional and stratified fashions are found to have essentially identical accuracy for defect energies, phonon dispersions, formation energies, etc. The models robustness is further illustrated via unconstrained evolutionary structure searches in which the NN is used for the local optimization of crystal unit cells.