Multi-waveband Variations of Blazars during Gamma-ray Outbursts


Abstract in English

Multi-wavelength light curves of bright gamma-ray blazars (e.g., 3C 454.3) reveal strong correlations across wavebands, yet striking dissimilarities in the details. This conundrum can be explained if the variable flux and polarization result from both (1) modulation in the magnetic field and relativistic electron content imparted at the jet input and (2) turbulence in the flow. In the Turbulent Extreme Multi-Zone (TEMZ) model being developed by the author, much of the optical and high-energy radiation in a blazar is emitted near the 43 GHz core of the jet as seen in VLBA images, parsecs from the central engine, as indicated by observations of a number of blazars. The model creates simulated light curves through numerical calculations that approximate the behavior of turbulent plasma - modulated by random fluctuations of the jet flow - crossing a cone-shaped standing shock system that compresses the plasma and accelerates electrons to highly relativistic energies. A standing shock oriented transverse to the jet axis (Mach disk) at the vertex of the conical shock can create a variable nonthermal seed photon field that is highly blueshifted in the frame of the faster jet plasma, leading to highly luminous, rapidly variable gamma-ray emission.

Download