We present the first analysis of extended stellar kinematics of elliptical galaxies where a Yukawa--like correction to the Newtonian gravitational potential derived from f(R)-gravity is considered as an alternative to dark matter. In this framework, we model long-slit data and planetary nebulae data out to 7 Re of three galaxies with either decreasing or flat dispersion profiles. We use the corrected Newtonian potential in a dispersion-kurtosis Jeans analysis to account for the mass-anisotropy degeneracy. We find that these modified potentials are able to fit nicely all three elliptical galaxies and the anisotropy distribution is consistent with that estimated if a dark halo is considered. The parameter which measures the strength of the Yukawa-like correction is, on average, smaller than the one found previously in spiral galaxies and correlates both with the scale length of the Yukawa-like term and the orbital anisotropy.