Webs of Lagrangian Tori in Projective Symplectic Manifolds


Abstract in English

For a Lagrangian torus A in a simply-connected projective symplectic manifold M, we prove that M has a hypersurface disjoint from a deformation of A. This implies that a Lagrangian torus in a compact hyperkahler manifold is a fiber of an almost holomorphic Lagrangian fibration, giving an affirmative answer to a question of Beauvilles. Our proof employs two different tools: the theory of action-angle variables for algebraically completely integrable Hamiltonian systems and Wielandts theory of subnormal subgroups.

Download