Do you want to publish a course? Click here

Polaron relaxation in ferroelectric thin films

189   0   0.0 ( 0 )
 Added by Mario Maglione
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a dielectric relaxation in ferroelectric thin films of the ABO3 family. We have compared films of different compositions with several growth modes: sputtering (with and without magnetron) and sol-gel. The relaxation was observed at cryogenic temperature (T<100K) for frequencies from 100Hz up to 10MHz. This relaxation activation energy is always lower than 200meV. It is very similar to the polaron relaxation that we reported in the parent bulk perovskites. Being independent of the materials size, morphology and texture, this relaxation can be a useful probe of defects in actual integrated capacitors with no need for specific shaping



rate research

Read More

The effects of space charges on hysteresis loops and field distributions in ferroelectrics have been investigated numerically using the phenomenological Landau-Ginzburg-Devonshire theory. Cases with the ferroelectric fully and partially depleted have been considered. In general, increasing the number of charged impurities results in a lowering of the polarization and coercive field values. Squarer loops were observed in the partially depleted cases and a method was proposed to identify fully depleted samples experimentally from dielectric and polarization measurements alone. Unusual field distributions found for higher dopant concentrations have some interesting implications for leakage mechanisms and limit the range of validity of usual semiconductor equations for carrier transport.
146 - Daesu Lee , A. Yoon , S. Y. Jang 2011
We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane X-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders of magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.
153 - J. Y. Jo , H. S. Han , J.-G. Yoon 2007
We investigated domain kinetics by measuring the polarization switching behaviors of polycrystalline Pb(Zr,Ti)O$_{3}$ films, which are widely used in ferroelectric memory devices. Their switching behaviors at various electric fields and temperatures could be explained by assuming the Lorentzian distribution of domain switching times. We viewed the switching process under an electric field as a motion of the ferroelectric domain through a random medium, and we showed that the local field variation due to dipole defects at domain pinning sites could explain the intriguing distribution.
Doping ferroelectric Hf0.5Zr0.5O2 with La is a promising route to improve endurance. However, the beneficial effect of La on the endurance of polycrystalline films may be accompanied by degradation of the retention. We have investigated the endurance - retention dilemma in La-doped epitaxial films. Compared to undoped epitaxial films, large values of polarization are obtained in a wider thickness range, whereas the coercive fields are similar, and the leakage current is substantially reduced. Compared to polycrystalline La-doped films, epitaxial La-doped films show more fatigue but there is not significant wake-up effect and endurance-retention dilemma. The persistent wake-up effect common to polycrystalline La-doped Hf0.5Zr0.5O2 films, is limited to a few cycles in epitaxial films. Despite fatigue, endurance in epitaxial La-doped films is more than 1010 cycles, and this good property is accompanied by excellent retention of more than 10 years. These results demonstrate that wake-up effect and endurance-retention dilemma are not intrinsic in La-doped Hf0.5Zr0.5O2.
109 - Zuhuang Chen , Jian Liu , Yajun Qi 2015
There is growing evidence that domain walls in ferroics can possess emergent properties that are absent in bulk materials. For example, 180 domain walls in the ferroelectric-antiferromagnetic BiFeO3 are particularly interesting because they have been predicted to possess a range of intriguing behaviors; including electronic conduction and enhanced magnetization. To date, however, ordered arrays of such domain structures have not been reported. Here, we report the observation of 180 stripe nanodomains in (110)-oriented BiFeO3 thin films grown on orthorhombic GdScO3 (010)O substrates, and their impact on exchange coupling to metallic ferromagnets. Nanoscale ferroelectric 180 stripe domains with {112 } domain walls were observed in films < 32 nm thick to compensate for large depolarization fields. With increasing film thickness, we observe a domain structure crossover from the depolarization field-driven 180 stripe nanodomains to 71 domains determined by the elastic energy. Interestingly, these 180 domain walls (which are typically cylindrical or meandering in nature due to a lack of strong anisotropy associated with the energy of such walls) are found to be highly-ordered. Additional studies of Co0.9Fe0.1/BiFeO3 heterostructures reveal exchange bias and exchange enhancement in heterostructures based-on BiFeO3 with 180 domain walls and an absence of exchange bias in heterostructures based-on BiFeO3 with 71 domain walls; suggesting that the 180 domain walls could be the possible source for pinned uncompensated spins that give rise to exchange bias. This is further confirmed by X-ray circular magnetic dichroism studies, which demonstrate that films with predominantly 180 domain walls have larger magnetization than those with primarily 71 domain walls. Our results could be useful to extract the structure of domain walls and to explore domain wall functionalities in BiFeO3.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا