No Arabic abstract
The spin transfer torque is a phenomenon in which angular momentum of a spin polarized electrical current entering a ferromagnet is transferred to the magnetization. The effect has opened a new research field of electrically driven magnetization dynamics in magnetic nanostructures and plays an important role in the development of a new generation of memory devices and tunable oscillators. Optical excitations of magnetic systems by laser pulses have been a separate research field whose aim is to explore magnetization dynamics at short time scales and enable ultrafast spintronic devices. We report the experimental observation of the optical spin transfer torque, predicted theoretically several years ago building the bridge between these two fields of spintronics research. In a pump-and-probe optical experiment we measure coherent spin precession in a (Ga,Mn)As ferromagnetic semiconductor excited by circularly polarized laser pulses. During the pump pulse, the spin angular momentum of photo-carriers generated by the absorbed light is transferred to the collective magnetization of the ferromagnet. We interpret the observed optical spin transfer torque and the magnetization precession it triggers on a quantitative microscopic level. Bringing the spin transfer physics into optics introduces a fundamentally distinct mechanism from the previously reported thermal and non-thermal laser excitations of magnets. Bringing optics into the field of spin transfer torques decreases by several orders of magnitude the timescales at which these phenomena are explored and utilized.
Spin polarized carriers electrically injected into a magnet from an external polarizer can exert a spin transfer torque (STT) on the magnetization. The phe- nomenon belongs to the area of spintronics research focusing on manipulating magnetic moments by electric fields and is the basis of the emerging technologies for scalable magnetoresistive random access memories. In our previous work we have reported experimental observation of the optical counterpart of STT in which a circularly polarized pump laser pulse acts as the external polarizer, allowing to study and utilize the phenomenon on several orders of magnitude shorter timescales than in the electric current induced STT. Recently it has been theoretically proposed and experimentally demonstrated that in the absence of an external polarizer, carriers in a magnet under applied electric field can develop a non-equilibrium spin polarization due to the relativistic spin-orbit coupling, resulting in a current induced spin-orbit torque (SOT) acting on the magnetization. In this paper we report the observation of the optical counterpart of SOT. At picosecond time-scales, we detect excitations of magnetization of a ferromagnetic semiconductor (Ga,Mn)As which are independent of the polarization of the pump laser pulses and are induced by non-equilibrium spin-orbit coupled photo-holes.
The current driven magnetisation dynamics of a helical spin-density wave is investigated. Expressions for calculating the spin-transfer torque of real systems from first principles density functional theory are presented. These expressions are used for calculating the spin-transfer torque for the spin spirals of Er and fcc Fe at two different lattice volumes. It is shown that the calculated torque induces a rigid rotation of the order parameter with respect to the spin spiral axis. The torque is found to depend on the wave vector of the spin spiral and the spin-polarisation of the Fermi surface states. The resulting dynamics of the spin spiral is also discussed.
Current-induced spin-transfer torques (STT) and spin-orbit torques (SOT) enable the electrical switching of magnetic tunnel junctions (MTJs) in nonvolatile magnetic random access memories. In order to develop faster memory devices, an improvement of the timescales underlying the current driven magnetization dynamics is required. Here we report all-electrical time-resolved measurements of magnetization reversal driven by SOT in a three-terminal MTJ device. Single-shot measurements of the MTJ resistance during current injection reveal that SOT switching involves a stochastic two-step process consisting of a domain nucleation time and propagation time, which have different genesis, timescales, and statistical distributions compared to STT switching. We further show that the combination of SOT, STT, and voltage control of magnetic anisotropy (VCMA) leads to reproducible sub-ns switching with a spread of the cumulative switching time smaller than 0.2 ns. Our measurements unravel the combined impact of SOT, STT, and VCMA in determining the switching speed and efficiency of MTJ devices.
Current-induced spin torques provide efficient data writing approaches for magnetic memories. Recently, the spin splitting torque (SST) was theoretically predicted (R. Gonzalez-Hernandez et al. Phys. Rev. Lett. 126, 127701 (2021)), which combines advantages of conventional spin transfer torque (STT) and spin-orbit torque (SOT) as well as enables controllable spin polarization. Here we provide the experimental evidence of SST in collinear antiferromagnet RuO2 films. The spin current direction is found to be correlated to the crystal orientation of RuO2 and the spin polarization direction is dependent on (parallel to) the Neel vector. These features are quite characteristic for the predicted SST. Our finding not only present a new member for the spin torques besides traditional STT and SOT, but also proposes a promising spin source RuO2 for spintronics.
We investigate the effect of a direct current on propagating spin waves in a CoFeB/Ta bilayer structure. Using the micro-Brillouin light scattering technique, we observe that the spin wave amplitude may be attenuated or amplified depending on the direction of the current and the applied magnetic field. Our work suggests an effective approach for electrically controlling the propagation of spin waves in a magnetic waveguide and may be useful in a number of applications such as phase locked nano-oscillators and hybrid information processing devices.