Do you want to publish a course? Click here

Toward a Theory on the Stability of Protein Folding: Challenges for Folding Models

124   0   0.0 ( 0 )
 Added by Josephine Nanao
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We adopt the point of view that analysis of the stability of the protein folding process is central to understanding the underlying physics of folding. Stability of the folding process means that many perturbations do not disrupt the progress from the random coil to the native state. In this paper we explore the stability of folding using established methods from physics and mathematics. Our result is a preliminary theory of the physics of folding. We suggest some tests of these ideas using folding simulations. We begin by supposing that folding events are related in some way to mechanical waves on the molecule. We adopt an analytical approach to the physics which was pioneered by M.V. Berry, (in another context), based upon mathematics developed mainly by R. Thom and V.I. Arnold. We find that the stability of the folding process can be understood in terms of structures known as caustics, which occur in many kinds of wave phenomena. The picture that emerges is that natural selection has given us a set of protein molecules which have mechanical waves that propagate according to several mathematically specific restrictions. Successful simulations of folding can be used to test and constrain these wave motions. With some additional assumptions the theory explains or is consistent with a number of experimental facts about folding. We emphasize that this wave-based approach is fundamentally different from energy-based approaches.



rate research

Read More

128 - Walter Simmons 2015
The protein folding problem must ultimately be solved on all length scales from the atomic up through a hierarchy of complicated structures. By analyzing the stability of the folding process using physics and mathematics, this paper shows that features without length scales, i.e. topological features, are potentially of central importance. Topology is a natural mathematical tool for the study of shape and we avail ourselves of that tool to examine the relationship between the amino acid sequence and the shapes of protein molecules. We apply what we learn to conjectures about their biological evolution.
300 - Walter Simmons 2013
Processes that proceed reliably from a variety of initial conditions to a unique final form, regardless of moderately changing conditions, are of obvious importance in biophysics. Protein folding is a case in point. We show that the action principle can be applied directly to study the stability of biological processes. The action principle in classical physics starts with the first variation of the action and leads immediately to the equations of motion. The second variation of the action leads in a natural way to powerful theorems that provide quantitative treatment of stability and focusing and also explain how some very complex processes can behave as though some seemingly important forces drop out. We first apply these ideas to the non-equilibrium states involved in two-state folding. We treat torsional waves and use the action principle to talk about critical points in the dynamics. For some proteins the theory resembles TST. We reach several quantitative and qualitative conclusions. Besides giving an explanation of why TST often works in folding, we find that the apparent smoothness of the energy funnel is a natural consequence of the putative critical points in the dynamics. These ideas also explain why biological proteins fold to unique states and random polymers do not. The insensitivity to perturbations which follows from the presence of critical points explains how folding to a unique shape occurs in the presence of dilute denaturing agents in spite of the fact that those agents disrupt the folded structure of the native state. This paper contributes to the theoretical armamentarium by directing attention to the logical progression from first physical principles to the stability theorems related to catastrophe theory as applied to folding. This can potentially have the same success in biophysics as it has enjoyed in optics.
81 - Walter A. Simmons 2017
The protein folding problem is stated and a list of properties that do not depend upon specific molecules is compiled and analyzed. The relationship of this analysis to future simulations is emphasized. The choice of power and time as variables as opposed to energy and time is discussed. A wave motion model is reviewed and related to the action in classical mechanics. It is argued that the properties of the action support the idea that folding takes place in small steps. It is explained how catastrophe theory has been employed in wave motion models and how it can be used in examination of successful simulations
The statistical properties of protein folding within the {phi}^4 model are investigated. The calculation is performed using statistical mechanics and path integral method. In particular, the evolution of heat capacity in term of temperature is given for various levels of the nonlinearity of source and the strength of interaction between protein backbone and nonlinear source. It is found that the nonlinear source contributes constructively to the specific heat especially at higher temperature when it is weakly interacting with the protein backbone. This indicates increasing energy absorption as the intensity of nonlinear sources are getting greater. The simulation of protein folding dynamics within the model is also refined.
A model to describe the mechanism of conformational dynamics in secondary protein based on matter interactions is proposed. The approach deploys the lagrangian method by imposing certain symmetry breaking. The protein backbone is initially assumed to be nonlinear and represented by the Sine-Gordon equation, while the nonlinear external bosonic sources is represented by $phi^4$ interaction. It is argued that the nonlinear source induces the folding pathway in a different way than the previous work with initially linear backbone. Also, the nonlinearity of protein backbone decreases the folding speed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا