Do you want to publish a course? Click here

Cosmic ray anisotropy studies with the Stockholm Educational Air Shower array

131   0   0.0 ( 0 )
 Added by Petter Hofverberg
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Stockholm Educational Air Shower Array (SEASA) project has established a network of GPS time-synchronised scintillator detector stations at high-schools in the Stockholm region. The primary aim of this project is outreach. A part of the network comprises a dense cluster of detector stations located at AlbaNova University Centre. This cluster is being used to study the cosmic ray anisotropy around the knee. Each station consists of three scintillator detectors in a triangular geometry which allows multiple timing measurements as the shower front sweeps over the station. The timing resolution of the system has been determined and the angular resolution has been studied using Monte Carlo simulations and is compared to data. The potential of this system to study small and large scale cosmic ray anisotropies is discussed.



rate research

Read More

We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the South Pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10^-3 level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30 degrees and an amplitude of (-1.58 +/- 0.46 (stat) +/- 0.52 (sys)) x 10^(-3) at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (-3.11 +/- 0.38 (stat) +/- 0.96 (sys)) x 10^(-3).
We report the analysis of the $10-1000$ TeV large-scale sidereal anisotropy of Galactic cosmic rays (GCRs) with the data collected by the Tibet Air Shower Array from October, 1995 to February, 2010. In this analysis, we improve the energy estimate and extend the declination range down to $-30^{circ}$. We find that the anisotropy maps above 100 TeV are distinct from that at multi-TeV band. The so-called tail-in and loss-cone features identified at low energies get less significant and a new component appears at $sim100$ TeV. The spatial distribution of the GCR intensity with an excess (7.2$sigma$ pre-trial, 5.2$sigma$ post-trial) and a deficit ($-5.8sigma$ pre-trial) are observed in the 300 TeV anisotropy map, in a good agreement with IceCubes results at 400 TeV. Combining the Tibet results in the northern sky with IceCubes results in the southern sky, we establish a full-sky picture of the anisotropy in hundreds of TeV band. We further find that the amplitude of the first order anisotropy increases sharply above $sim100$ TeV, indicating a new component of the anisotropy. All these results may shed new light on understanding the origin and propagation of GCRs.
174 - M. Amenomori , X. J. Bi , D. Chen 2010
We analyze the large-scale two-dimensional sidereal anisotropy of multi-TeV cosmic rays by Tibet Air Shower Array, with the data taken from 1999 November to 2008 December. To explore temporal variations of the anisotropy, the data set is divided into nine intervals, each in a time span of about one year. The sidereal anisotropy of magnitude about 0.1% appears fairly stable from year to year over the entire observation period of nine years. This indicates that the anisotropy of TeV Galactic cosmic rays remains insensitive to solar activities since the observation period covers more than a half of the 23rd solar cycle.
Studies of the composition of the highest energy cosmic rays with the Pierre Auger Observatory, including examination of hadronic physics effects on the structure of extensive air showers. Submissions to the 31st ICRC, Lodz, Poland (July 2009).
With the Akeno Giant Air Shower Array (AGASA), 581 cosmic rays above 10^19eV, 47 above 4 x 10^19eV, and 7 above 10^20eV are observed until August 1998. Arrival direction distribution of these extremely high energy cosmic rays has been studied. While no significant large-scale anisotropy is found on the celestial sphere, some interesting clusters of cosmic rays are observed. Above 4 x 10^19eV, there are one triplet and three doublets within separation angle of 2.5^o and the probability of observing these clusters by a chance coincidence under an isotropic distribution is smaller than 1 %. Especially the triplet is observed against expected 0.05 events. The cos(theta_GC) distribution expected from the Dark Matter Halo model fits the data as well as an isotropic distribution above 2 x 10^19eV and 4 x 10^19eV, but is a poorer fit than isotropy above 10^19eV. Arrival direction distribution of seven 10^20eV cosmic rays is consistent with that of lower energy cosmic rays and is uniform. Three of seven are members of doublets above about 4 x 10^19eV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا