No Arabic abstract
We present a measurement of the CP-violating parameter betas using approximately 6500 $BsJpsiPhi$ decays reconstructed with the CDF,II detector in a sample of $pbar p$ collisions at $sqrt{s}=1.96$ TeV corresponding to 5.2 fb$^{-1}$ integrated luminosity produced by the Tevatron Collider at Fermilab. We find the CP-violating phase to be within the range $betas in [0.02, 0.52] cup [1.08, 1.55]$ at 68% confidence level where the coverage property of the quoted interval is guaranteed using a frequentist statistical analysis. This result is in agreement with the standard model expectation at the level of about one Gaussian standard deviation. We consider the inclusion of a potential $S$-wave contribution to the $Bsto J/psi K^+K^-$ final state which is found to be negligible over the mass interval $1.009 < m(K^+K^-)<1.028 gevcc$. Assuming the standard model prediction for the CP-violating phase betas, we find the Bs decay width difference to be $deltaG = 0.075 pm 0.035,textrm{(stat)} pm 0.006,textrm{(syst)} ps$. We also present the most precise measurements of the Bs mean lifetime $tau(Bs) = 1.529 pm 0.025,textrm{(stat)} pm 0.012,textrm{(syst)}$ ps, the polarization fractions $|A_0(0)|^2 = 0.524 pm 0.013,textrm{(stat)} pm 0.015,textrm{(syst)}$ and $|A_{parallel}(0)|^2 = 0.231 pm 0.014,textrm{(stat)} pm 0.015,textrm{(syst)}$, as well as the strong phase $delta_{perp}= 2.95 pm 0.64,textrm{(stat)} pm 0.07,textrm{(syst)} textrm{rad}$. In addition, we report an alternative Bayesian analysis that gives results consistent with the frequentist approach.
A flavour-tagged time-dependent angular analysis of $B^0_sto J/psiphi$ decays is presented where the $J/psi$ meson is reconstructed through its decay to an $e^+e^-$ pair. The analysis uses a sample of $pp$ collision data recorded with the LHCb experiment at centre-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb$^{-1}$. The $CP$-violating phase and lifetime parameters of the $B^0_s$ system are measured to be $phi_s=0.00pm0.28pm0.07$ rad, $DeltaGamma_s=0.115pm0.045pm0.011$ ps$^{-1}$ and $Gamma_s=0.608pm0.018pm0.012$ ps$^{-1}$ where the first uncertainty is statistical and the second systematic. This is the first time that $CP$-violating parameters are measured in the $B^0_sto J/psiphi$ decay with an $e^+e^-$ pair in the final state. The results are consistent with previous measurements in other channels and with the Standard Model predictions.
The mixing-induced CP-violating phase $phi_s$ in ${B}^0_s$ and $overline{B}^0_s$ decays is measured using the $J/psi pi^+pi^-$ final state in data, taken from 3,fb$^{-1}$ of integrated luminosity, collected with the LHCb detector in 7 and 8 TeV centre-of-mass $pp$ collisions at the LHC. A time-dependent flavour-tagged amplitude analysis, allowing for direct CP violation, yields a value for the phase $phi_s=70pm 68pm 8$,mrad. This result is consistent with the Standard Model expectation and previous measurements.
Measurement of the mixing-induced CP-violating phase phi_s in Bs decays is of prime importance in probing new physics. Here 7421 +/- 105 signal events from the dominantly CP-odd final state J/psi pi+ pi- are selected in 1/fb of pp collision data collected at sqrt{s} = 7 TeV with the LHCb detector. A time-dependent fit to the data yields a value of phi_s=-0.019^{+0.173+0.004}_{-0.174-0.003} rad, consistent with the Standard Model expectation. No evidence of direct CP violation is found.
A first flavour-tagged measurement of the time-dependent CP-violating asymmetry in $B_s^0 to phiphi$ decays is presented. In this decay channel, the CP-violating weak phase arises due to CP violation in the interference between $B_s^0$-$bar{B}_s^0$ mixing and the $b to s bar{s} s $ gluonic penguin decay amplitude. Using a sample of $pp$ collision data corresponding to an integrated luminosity of $1.0; fb^{-1}$ and collected at a centre-of-mass energy of $7 rm TeV$ with the LHCb detector, $880 B_s^0 to phiphi$ signal decays are obtained. The CP-violating phase is measured to be in the interval [-2.46, -0.76] rm rad$ at 68% confidence level. The p-value of the Standard Model prediction is 16%.
Study of CP violation in the decay channel Bs->J/psi phi is essential to exploring and constraining physics beyond the Standard Model in the quark flavour sector. The experimental progress in this area of activity at the LHC and Tevatron is discussed.