Do you want to publish a course? Click here

Long-time tails in the random transverse Ising chain

166   0   0.0 ( 0 )
 Added by Xiangmu Kong
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Taking one-dimensional random transverse Ising model (RTIM) with the double-Gaussian disorder for example, we investigated the spin autocorrelation function (SAF) and associated spectral density at high temperature by the recursion method. Based on the first twelve recurrants obtained analytically, we have found strong numerical evidence for the long-time tail in the SAF of a single spin. Numerical results indicate that when the standard deviation {sigma}_{JS} (or {sigma}_{BS}) of the exchange couplings J_{i} (or the random transverse fields B_{i}) is small, no long-time tail appears in the SAF. The spin system undergoes a crossover from a central-peak behavior to a collective-mode behavior, which is the dynamical characteristics of RTIM with the bimodal disorder. However, when the standard deviation is large enough, the system exhibits similar dynamics behaviors to those of the RTIM with the Gaussian disorder, i.e., the system exhibits an enhanced central-peak behavior for large {sigma}_{JS} or a disordered behavior for large {sigma}_{BS}. In this instance, the long-time tails in the SAFs appear, i.e., C(t)simt^{-2}. Similar properties are obtained when the random variables (J_{i} or B_{i}) satisfy other distributions such as the double-exponential distribution and the double-uniform distribution.



rate research

Read More

88 - D. J. Priour Jr , 2000
We study a one-dimensional chain of corner-sharing triangles with antiferromagnetic Ising interactions along its bonds. Classically, this system is highly frustrated with an extensive entropy at T = 0 and exponentially decaying spin correlations. We show that the introduction of a quantum dynmamics via a transverse magnetic field removes the entropy and opens a gap, but leaves the ground state disordered at all values of the transverse field, thereby providing an analog of the disorder by disorder scenario first proposed by Anderson and Fazekas in their search for resonating valence bond states. Our conclusion relies on exact diagonalization calculations as well as on the analysis of a 14th order series expansion about the large transverse field limit. This test suggests that the series method could be used to search for other instances of quantum disordered states in frustrated transverse field magnets in higher dimensions.
274 - Andrea Fiege , Timo Aspelmeier , 2011
We study the velocity autocorrelation function (VACF) of a driven granular fluid in the stationary state in 3 dimensions. As the critical volume fraction of the glass transition in the corresponding elastic system is approached, we observe pronounced cage effects in the VACF as well as a strong decrease of the diffusion constant. At moderate densities the VACF is shown to decay algebraically in time (t^{-3/2}) like in a molecular fluid, as long as the driving conserves momentum locally.
80 - F. Igloi , R. Juhasz , 1998
We consider the paramagnetic phase of the random transverse-field Ising spin chain and study the dynamical properties by numerical methods and scaling considerations. We extend our previous work [Phys. Rev. B 57, 11404 (1998)] to new quantities, such as the non-linear susceptibility, higher excitations and the energy-density autocorrelation function. We show that in the Griffiths phase all the above quantities exhibit power-law singularities and the corresponding critical exponents, which vary with the distance from the critical point, can be related to the dynamical exponent z, the latter being the positive root of [(J/h)^{1/z}]_av=1. Particularly, whereas the average spin autocorrelation function in imaginary time decays as [G]_av(t)~t^{-1/z}, the average energy-density autocorrelations decay with another exponent as [G^e]_av(t)~t^{-2-1/z}.
Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a shell-like structure: after the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a $t^{-1}$ power law at long time $t$. On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a ball-like structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law $t^{-1/4}$ for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a ball-like structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.
163 - F. Igloi , G. Roosz , L. Turban 2014
We study the time evolution of the local magnetization in the critical Ising chain in a transverse field after a sudden change of the parameters at a defect. The relaxation of the defect magnetization is algebraic and the corresponding exponent, which is a continuous function of the defect parameters, is calculated exactly. In finite chains the relaxation is oscillating in time and its form is conjectured on the basis of precise numerical calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا