Do you want to publish a course? Click here

Location of the Gamma-Ray Flaring Emission in the Parse-Scale Jet of the BL Lac Object AO 0235+164

149   0   0.0 ( 0 )
 Added by Ivan Agudo
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We locate the gamma-ray and lower frequency emission in flares of the BL Lac object AO 0235+164 at >12pc in the jet of the source from the central engine. We employ time-dependent multi-spectral-range flux and linear polarization monitoring observations, as well as ultra-high resolution (~0.15 milliarcsecond) imaging of the jet structure at lambda=7mm. The time coincidence in the end of 2008 of the propagation of the brightest superluminal feature detected in AO 0235+164 (Qs) with an extreme multi-spectral-range (gamma-ray to radio) outburst, and an extremely high optical and 7mm (for Qs) polarization degree provides strong evidence supporting that all these events are related. This is confirmed at high significance by probability arguments and Monte-Carlo simulations. These simulations show the unambiguous correlation of the gamma-ray flaring state in the end of 2008 with those in the optical, millimeter, and radio regime, as well as the connection of a prominent X-ray flare in October 2008, and of a series of optical linear polarization peaks, with the set of events in the end of 2008. The observations are interpreted as the propagation of an extended moving perturbation through a re-collimation structure at the end of the jets acceleration and collimation zone.



rate research

Read More

We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array (VLBA) images at 7mm with 0.15 milliarcsecond resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte-Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7 mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary core and in the superluminal knot, both parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the line of sight by light-travel time delays, that passes through a standing recollimation shock in the core and propagates down the jet to create the superluminal knot. The multi-wavelength light curves vary together on long time-scales (months/years), but the correspondence is poorer on shorter time-scales. This, as well as the variability of the polarization and the dual location of the outburst, agrees with the expectations of a multi-zone emission model in which turbulence plays a major role in modulating the synchrotron and inverse Compton fluxes.
66 - S. Frey 2005
In 1999, the highly compact and variable BL Lac object AO 0235+164 was identified as the highest brightness temperature active galactic nucleus observed with the VLBI Space Observatory Programme (VSOP), with T_B > 5.8 x 10^{13} K. The sub-milliarcsecond radio structure of this source has been studied with dual-frequency (1.6 and 5 GHz), polarization-sensitive VSOP observations during 2001 and 2002. Here we present the results of this monitoring campaign. At the time of these observations, the source was weakly polarized and characterized by a radio core that is clearly resolved on space-ground baselines.
We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164 in 2008. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array (VLBA) images at 7mm with ~0.15 milliarcsecond resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte-Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary core and in the superluminal knot, both at >12 parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the line of sight by light-travel time delays, that passes through a standing recollimation shock in the core and propagates down the jet to create the superluminal knot. The multi-wavelength light curves vary together on long time-scales (months/years), but the correspondence is poorer on shorter time-scales. This, as well as the variability of the polarization and the dual location of the outburst, agrees with the expectations of a multi-zone emission model in which turbulence plays a major role in modulating the synchrotron and inverse Compton fluxes.
86 - J.H. Fan , O. Kurtanidze , Y. Liu 2017
Variability is one of the extreme observational properties of BL Lacertae objects. AO 0235+164 is a well studied BL Lac through the whole electro-magnetic wavebands. In the present work, we show its optical R band photometric observations carried out during the period of Nov, 2006 to Dec. 2012 using the Ap6E CCD camera attached to the primary focus of the $rm 70-cm$ meniscus telescope at Abastumani Observatory, Georgia. It shows a large variation of $Delta R$ = 4.88 mag (14.19 - 19.07 mag) and a short time scale of $Delta T_v$ = 73.5 min during our monitoring period. During the period of Dec. 2006 to Nov. 2009, we made radio observations of the source using the 25-m radio telescope at Xinjiang Astronomical Observatory. When a discrete correlation function (DCF) is adopted to the optical and radio observations, we found that the optical variation leads the radio variation by 23.2$pm$12.9 days.
The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to {gamma} -ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP- WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the {gamma} -ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 Rg . We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا