No Arabic abstract
A review of the results of the Near-IR S0 galaxy Survey (NIRS0S) is presented. NIRS0S is a magnitude (mB 12.5 mag) and inclination (< 65o) limited sample of 200 nearby galaxies, mainly S0s. It uses deep Ks -band images, typically reaching a surface brightness of 23.5 mag arcsec^(-2) . Detailed visual and photometric classifications were made, for the first time coding also the lenses in a systematic manner. As a comparison sample, a similar sized spiral galaxy sample with similar image quality was used. The main emphasis were to study whether the S0s are former spirals in which star formation has been ceased, and also, how robust are bars in galaxies. Based on our analysis the Hubble sequence was revisited: following the early idea by van den Bergh we suggested that the S0s are spread throughout the Hubble sequence in parallel tuning forks as spirals (S0a, S0b, S0c etc.). This is evidenced by our improved bulge-to-total (B/T) flux ratios, reaching as small values as typically found in late-type spirals. The properties of bulges and disks in S0s were found to be similar to those in spirals. Also, the masses and scale parameters of the bulges and disks were found to be coupled. Bars were found to be fairly robust both in S0s and spirals, but inspite of that bars might evolve significantly within the Hubble sequence.
An atlas of Ks-band images of 206 early-type galaxies is presented, including 160 S0-S0/a galaxies, 12 ellipticals, and 33 Sa galaxies. A majority of the Atlas galaxies belong to a magnitude-limited (mB<12.5 mag) sample of 185 NIRS0S (Near-IR S0 galaxy Survey) galaxies. To assure that mis-classified S0s are not omitted, 25 ellipticals from RC3 classified as S0s in the Carnegie Atlas were included in the sample. The images are 2-3 mag deeper than 2MASS images. Both visual and photometric classifications are made. Special attention is paid to the classification of lenses, coded in a systematic manner. A new lens-type, called a barlens, is introduced. Also, boxy/peanut/x-shaped structures are identified in many barred galaxies, even-though the galaxies are not seen in edge-on view, indicating that vertical thickening is not enough to explain them. Multiple lenses appear in 25% of the Atlas galaxies, which is a challenge to the hierarchical evolutionary picture of galaxies. Such models need to explain how the lenses were formed and survived in multiple merger events that galaxies may have suffered during their lifetimes. Following the early suggestion by van den Bergh, candidates of S0c galaxies are shown, which galaxies are expected to be former Sc-type spirals stripped out of gas.
The origins of S0 galaxies remain obscure, with various mechanisms proposed for their formation, likely depending on environment. These mechanisms would imprint different signatures in the galaxies stellar kinematics out to large radii, offering a method for distinguishing between them. We aim to study a sample of six S0 galaxies from a range of environments, and use planetary nebulae (PNe) as tracers of their stellar populations out to very large radii, to determine their kinematics in order to understand their origins. Using a special-purpose instrument, the Planetary Nebula Spectrograph, we observe and extract PNe catalogues for these six systems*. We show that the PNe have the same spatial distribution as the starlight, that the numbers of them are consistent with what would be expected in a comparable old stellar population in elliptical galaxies, and that their kinematics join smoothly onto those derived at smaller radii from conventional spectroscopy. The high-quality kinematic observations presented here form an excellent set for studying the detailed kinematics of S0 galaxies, in order to unravel their formation histories. We find that PNe are good tracers of stellar kinematics in these systems. We show that the recovered kinematics are largely dominated by rotational motion, although with significant random velocities in most cases.
The ALHAMBRA survey aims to cover 4 square degrees using a system of 20 contiguous, equal width, medium-band filters spanning the range 3500 A to 9700 A plus the standard JHKs filters. Here we analyze deep near-IR number counts of one of our fields (ALH08) for which we have a relatively large area (0.5 square degrees) and faint photometry (J=22.4, H=21.3 and K=20.0 at the 50% of recovery efficiency for point-like sources). We find that the logarithmic gradient of the galaxy counts undergoes a distinct change to a flatter slope in each band: from 0.44 at [17.0, 18.5] to 0.34 at [19.5, 22.0] for the J band; for the H band 0.46 at [15.5, 18.0] to 0.36 at [19.0, 21.0], and in Ks the change is from 0.53 in the range [15.0, 17.0] to 0.33 in the interval [18.0, 20.0]. These observations together with faint optical counts are used to constrain models that include density and luminosity evolution of the local type-dependent luminosity functions. Our models imply a decline in the space density of evolved early-type galaxies with increasing redshift, such that only 30% - 50% of the bulk of the present day red-ellipticals was already in place at z~1.
The stellar kinematics of the spheroids and discs of S0 galaxies contain clues to their formation histories. Unfortunately, it is difficult to disentangle the two components and to recover their stellar kinematics in the faint outer parts of the galaxies using conventional absorption line spectroscopy. This paper therefore presents the stellar kinematics of six S0 galaxies derived from observations of planetary nebulae (PNe), obtained using the Planetary Nebula Spectrograph. To separate the kinematics of the two components, we use a maximum-likelihood method that combines the discrete kinematic data with a photometric component decomposition. The results of this analysis reveal that: the discs of S0 galaxies are rotationally supported; however, the amount of random motion in these discs is systematically higher than in comparable spiral galaxies; and the S0s lie around one magnitude below the Tully--Fisher relation for spiral galaxies, while their spheroids lie nearly one magnitude above the Faber--Jackson relation for ellipticals. All of these findings are consistent with a scenario in which spirals are converted into S0s through a process of mild harassment or pestering, with their discs somewhat heated and their spheroid somewhat enhanced by the conversion process. In such a scenario, one might expect the properties of S0s to depend on environment. We do not see such an effect in this fairly small sample, although any differences would be diluted by the fact that the current location does not necessarily reflect the environment in which the transformation occurred. Similar observations of larger samples probing a broader range of environments, coupled with more detailed modelling of the transformation process to match the wide range of parameters that we have shown can now be measured, should take us from these first steps to the definitive answer as to how S0 galaxies form.
The Dwarf Galaxy Survey (DGS) program is studying low-metallicity galaxies using 230h of far-infrared (FIR) and submillimetre (submm) photometric and spectroscopic observations of the Herschel Space Observatory and draws to this a rich database of a wide range of wavelengths tracing the dust, gas and stars. This sample of 50 galaxies includes the largest metallicity range achievable in the local Universe including the lowest metallicity (Z) galaxies, 1/50 Zsun, and spans 4 orders of magnitude in star formation rates. The survey is designed to get a handle on the physics of the interstellar medium (ISM) of low metallicity dwarf galaxies, especially on their dust and gas properties and the ISM heating and cooling processes. The DGS produces PACS and SPIRE maps of low-metallicity galaxies observed at 70, 100, 160, 250, 350, and 500 mic with the highest sensitivity achievable to date in the FIR and submm. The FIR fine-structure lines, [CII] 158 mic, [OI] 63 mic, [OI] 145 mic, [OIII] 88 mic, [NIII] 57 mic and [NII] 122 and 205 mic have also been observed with the aim of studying the gas cooling in the neutral and ionized phases. The SPIRE FTS observations include many CO lines (J=4-3 to J=13-12), [NII] 205 mic and [CI] lines at 370 and 609 mic. This paper describes the sample selection and global properties of the galaxies, the observing strategy as well as the vast ancillary database available to complement the Herschel observations. The scientific potential of the full DGS survey is described with some example results included.