Do you want to publish a course? Click here

Evidence for a negative-parity spin-doublet of nucleon resonances at 1.88,GeV

97   0   0.0 ( 0 )
 Added by Eberhard Klempt
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Evidence is reported for two nucleon resonances with spin-parity $J^P=1/2^-$ and $J^P=3/2^-$ at a mass just below 1.9,GeV. The evidence is derived from a coupled-channel analysis of a large number of pion and photo-produced reactions. The two resonances are nearly degenerate in mass with two resonances of the same spin but positive parity. Such parity doublets are predicted in models claiming restoration of chiral symmetry in high-mass excitations of the nucleon. Further examples of spin parity doublets are found in addition. Alternatively, the spin doublet can be interpreted as member of the 56-plet expected in the third excitation band of the nucleon. Implications for the problem of the {it missing resonances} are discussed.



rate research

Read More

Results from a multi-channel partial wave analysis of elastic and inelastic $pi N$ and $gamma N$ induced reactions are presented. The analysis evidences the existence of a spin-quartet of nucleon resonances with total angular momenta $J^P=1/2^+,..., 7/2^+$. All states fall into a $pm130$,MeV mass gap centered at 1.97,GeV. The spin quartet is at variance with S-wave diquark configurations required in classical di-quark models.
Data on the reaction $gamma pto K^+Lambda$ from the CLAS experiments are used to derive the leading multipoles, $E_{0+}$, $M_{1-}$, $E_{1+}$, and $M_{1+}$, from the production threshold to 2180,MeV in 24 slices of the invariant mass. The four multipoles are determined without any constraints. The multipoles are fitted using a multichannel $L+P$ model which allows us to search for singularities and to extract the positions of poles on the complex energy plane in an almost model-independent method. The multipoles are also used as additional constraints in an energy-dependent analysis of a large body of pion and photo-induced reactions within the Bonn-Gatchina (BnGa) partial wave analysis. The study confirms the existence of poles due to nucleon resonances with spin-parity $J^P = 1/2^-; 1/2^+$, and $3/2^+$ in the region at about 1.9,GeV.
The one-pion and two-pion production in the p(alpha, alpha prime)X reaction at an energy of E{alpha} = 4.2 GeV has been studied by simultaneous registration of the scattered alpha particles and the secondary pion or proton. The obtained results demonstrate that the inelastic alpha-particle scattering on the proton at the energy of the experiment proceeds either through excitation and decay of Delta resonance in the projectile or through excitation in the target proton of the Roper resonance, which decays mainly on a nucleon and a pion or a nucleon and a sigma meson - system of two pions in the isospin I = 0, S-wave.
We present the results of a lattice study of light-cone distribution amplitudes (DAs) of the nucleon and negative parity nucleon resonances using two flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to m_pi = 150 MeV. We find that the three valence quarks in the proton share their momentum in the proportion 37% : 31% : 31%, where the larger fraction corresponds to the u-quark that carries proton helicity, and determine the value of the wave function at the origin in position space, which turns out to be small compared to the existing estimates based on QCD sum rules. Higher-order moments are constrained by our data and are all compatible with zero within our uncertainties. We also calculate the normalization constants of the higher-twist DAs that are related to the distribution of quark angular momentum. Furthermore, we use the variational method and customized parity projection operators to study the states with negative parity. In this way we are able to separate the contributions of the two lowest states that, as we argue, possibly correspond to N*(1535) and a mixture of N*(1650) and the pion-nucleon continuum, respectively. It turns out that the state that we identify with N*(1535) has a very different DA as compared to both the second observed negative parity state and the nucleon, which may explain the difference in the decay patterns of N*(1535) and N*(1650) observed in experiment.
61 - J.-M. Sparenberg 2001
A supersymmetric inversion method is applied to the singlet $^1S_0$ and $^1P_1$ neutron-proton elastic phase shifts. The resulting central potential has a one-pion-exchange (OPE) long-range behavior and a parity-independent short-range part; it fits inverted data well. Adding a regularized OPE tensor term also allows the reproduction of the triplet $^3P_0$, $^3P_1$ and $^3S_1$ phase shifts as well as of the deuteron binding energy. The potential is thus also spin-independent (except for the OPE part) and contains no spin-orbit term. These important simplifications of the neutron-proton interaction are shown to be possible only if the potential possesses Pauli forbidden bound states, as proposed in the Moscow nucleon-nucleon model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا