No Arabic abstract
Incorporating all recent theoretical advances, we resum soft-gluon corrections to the total $tbar t$ cross-section at hadron colliders at the next-to-next-to-leading logarithmic (NNLL) order. We perform the resummation in the well established framework of Mellin $N$-space resummation. We exhaustively study the sources of systematic uncertainty like renormalization and factorization scale variation, power suppressed effects and missing two- and higher-loop corrections. The inclusion of soft-gluon resummation at NNLL brings only a minor decrease in the perturbative uncertainty with respect to the NLL approximation, and a small shift in the central value, consistent with the quoted uncertainties. These numerical predictions agree with the currently available measurements from the Tevatron and LHC and have uncertainty of similar size. We conclude that significant improvements in the $tbar t$ cross-sections can potentially be expected only upon inclusion of the complete NNLO corrections.
We present predictions for the total ttbar production cross section sigma_ttbar at the Tevatron and LHC, which include the resummation of soft logarithms and Coulomb singularities through next-to-next-to-leading logarithmic order, and ttbar bound-state contributions. Resummation effects amount to about 8 % of the next-to-leading order result at Tevatron and about 3 % at LHC with 7 TeV centre-of-mass energy. They lead to a significant reduction of the theoretical uncertainty. With m_t=173.3 GeV, we find sigma_ttbar=7.22^{+0.31+0.71}_{-0.47-0.55} pb at Tevatron and sigma_ttbar=162.6^{+7.4+15.4}_{-7.5-14.7} at the LHC, in good agreement with the latest experimental measurements.
We present the first calculation of the next-to-next-to-leading order threshold soft function for top quark pair production at hadron colliders, with full velocity dependence of the massive top quarks. Our results are fully analytic, and can be entirely written in terms of generalized polylogarithms. The scale-dependence of our result coincides with the well-known two-loop anomalous dimension matrix including the three-parton correlations, which at the two-loop order only appear when more than one massive partons are involved in the scattering process. In the boosted limit, our result exhibits the expected factorization property of mass logarithms, which leads to a consistent extraction of the soft fragmentation function. The next-to-next-to-leading order soft function obtained in this paper is an important ingredient for threshold resummation at the next-to-next-to-next-to-leading logarithmic accuracy.
We investigate the production of highly energetic top-quark pairs at hadron colliders, focusing on the case where the invariant mass of the pair is much larger than the mass of the top quark. In particular, we set up a factorization formalism appropriate for describing the differential partonic cross section in the double soft and small-mass limit, and explain how to resum simultaneously logarithmic corrections arising from soft gluon emission and from the ratio of the pair-invariant mass to that of the top quark to next-to-next-to-leading logarithmic accuracy. We explore the implications of our results on approximate next-to-next-to-leading order formulas for the differential cross section in the soft limit, pointing out that they offer a simplified calculational procedure for determining the currently unknown delta-function terms in the limit of high invariant mass.
We report the results of a next-to-leading order event generator of purely gluonic jet production. This calculation is the first step in the construction of a full next-to-leading order calculation of three jet production at hadron colliders. Several jet-algorithms commonly used in experiments are implemented and their numerical stability is investigated.
The production cross section for pseudo-scalar Higgs bosons at hadron colliders is computed at next-to-next-to-leading order (NNLO) in QCD. The pseudo-scalar Higgs is assumed to couple only to top quarks. The NNLO effects are evaluated using an effective lagrangian where the top quarks are integrated out. The NNLO corrections are similar in size to those found for scalar Higgs boson production.