Do you want to publish a course? Click here

$D^0$-mixing/CPV and $D$ decays

132   0   0.0 ( 0 )
 Added by Eunil Won
 Publication date 2011
  fields
and research's language is English
 Authors Eunil Won




Ask ChatGPT about the research

We review basic phenomenology on $D^0$ mixing/CP violation and recent experimental results on them. $D^0$ mixing is established by combining results from multiple experiments but no CP violation in the charm sector has been seen. $D^0$ mixing from a single experiment will clarify the size of the mixing, and observation of CP violation in charm decays at the present level of experimental sensitivity would be clear signal of new physics beyond the standard model.

rate research

Read More

We report measurements of charm-mixing parameters based on the decay-time-dependent ratio of $D^0to K^+pi^-$ to $D^0to K^-pi^+$ rates. The analysis uses a data sample of proton-proton collisions corresponding to an integrated luminosity of $5.0$ fb$^{-1}$ recorded by the LHCb experiment from 2011 through 2016. Assuming charge-parity (CP) symmetry, the mixing parameters are determined to be $x^2=(3.9 pm 2.7) times10^{-5}$, $y=(5.28 pm 0.52) times 10^{-3}$, and $R_D=(3.454 pm 0.031)times10^{-3}$. Without this assumption, the measurement is performed separately for $D^0$ and $overline{D}{}^0$ mesons, yielding a direct CP-violating asymmetry $A_D =(-0.1pm9.1)times10^{-3}$, and magnitude of the ratio of mixing parameters $1.00< |q/p| <1.35$ at the $68.3%$ confidence level. All results include statistical and systematic uncertainties and improve significantly upon previous single-measurement determinations. No evidence for CP violation in charm mixing is observed.
We report a measurement of ${D^{0}}$-${overline{D}{}^{0}}$ mixing parameters and a search for indirect $CP$ violation through a time-dependent amplitude analysis of ${D^0to K_S^0pi^+pi^-}$ decays. The results are based on 921~fb$^{-1}$ of data accumulated with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. Assuming $CP$ conservation, we measure the mixing parameters $x=(0.56pm0.19^{+0.03}_{-0.09}{^{+0.06}_{-0.09}})%$ and $y=(0.30pm0.15^{+0.04}_{-0.05}{^{+0.03}_{-0.06})}%$, where the errors are statistical, experimental systematic, and systematic due to the amplitude model, respectively. With $CP$ violation allowed, the parameters $|q/p|=0.90^{+0.16}_{-0.15}{^{+0.05}_{-0.04}}{^{+0.06}_{-0.05}}$ and $arg(q/p)=(-6pm11{pm3}{^{+3}_{-4}})^{circ}$ are found to be consistent with conservation of $CP$ symmetry in mixing and in the interference between mixing and decay, respectively.
73 - J. Li , Z.P.Zhang , A.J.Schwartz 2004
We have searched for mixing in the D0-D0bar system by measuring the decay-time distribution of D0->K+pi- decays. The analysis uses 90 fb^{-1} of data collected by the Belle detector at the KEKB e+e- collider. We fit the decay-time distribution for the mixing parameters x and y and also for the parameter R_D, which is the ratio of the rate for the doubly-Cabibbo-suppressed decay D0->K+pi- to that for the Cabibbo-favored decay D0->K-pi+. We do these fits both assuming CP conservation and allowing for CP violation. We use a frequentist method to obtain a 95% C.L. region in the x^2 - y plane. Assuming no mixing, we measure R_D = (0.381 pm 0.017 +0.008 -0.016) %.
We present an observation and rate measurement of the decay D0 -> K+pi-pi0 produced in 9/fb of e+e- collisions near the Upsilon(4S) resonance. The signal is inconsistent with an upward fluctuation of the background by 4.9 standard deviations. We measured the rate of D0 -> K+pi-pi0 normalized to the rate of D0bar -> K+pi-pi0 to be 0.0043 +0.0011 -0.0010 (stat) +/- 0.0007 (syst). This decay can be produced by doubly-Cabibbo-suppressed decays or by the D0 evolving into a D0bar through mixing, followed by a Cabibbo-favored decay to K+pi-pi0. We also found the CP asymmetry A=(8 +25 -22)% to be consistent with zero.
A search for mixing in the neutral D meson system has been performed using semileptonic D0 -> K(*)- e+ u and D0 -> K(*)- mu+ u decays. Neutral D mesons from D*+ -> D0 pi_s^+ decays are used and the flavor at production is tagged by the charge of the slow pion. The measurement is performed using 492 fb^-1 of data recorded by the Belle detector. From the yield of right-sign and wrong-sign decays arising from non-mixed and mixed events, respectively, we measure the ratio of the time-integrated mixing rate to the unmixed rate to be R_M = (1.3 +- 2.2 +- 2.0) x 10^-4. This corresponds to an upper limit of R_M < 6.1 x 10^-4 at the 90% C.L.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا