No Arabic abstract
In this work, we present a new model for the heat conductivity of porous dust layers in vacuum, based on an existing solution of the heat transfer equation of single spheres in contact. This model is capable of distinguishing between two different types of dust layers: dust layers composed of single particles (simple model) and dust layers consisting of individual aggregates (complex model). Additionally, we describe laboratory experiments, which were used to measure the heat conductivity of porous dust layers, in order to test the model. We found that the model predictions are in an excellent agreement with the experimental results, if we include radiative heat transport in the model. This implies that radiation plays an important role for the heat transport in porous materials. Furthermore, the influence of this new model on the Hertz factor are demonstrated and the implications of this new model on the modeling of cometary activity are discussed. Finally, the limitations of this new model are critically reviewed.
Our knowledge about the physical processes determining the activity of comets were mainly influenced by several extremely successful space missions, the predictions of theoretical models and the results of laboratory experiments. However, novel computer models should not be treated in isolation but should be based on experimental results. Therefore, a new experimental setup was constructed to investigate the temperature dependent sublimation properties of hexagonal water ice and the gas diffusion through a dry dust layer covering the ice surface. We show that this experimental setup is capable to reproduce known gas production rates of pure hexagonal water ice. The reduction of the gas production rate due to an additional dust layer on top of the ice surface was measured and compared to the results of another experimental setup in which the gas diffusion through dust layers at room temperature was investigated. We found that the relative permeability of the dust layer is inversely proportional to its thickness, which is also predicted by theoretical models. However, the measured absolute weakening of the gas flow was smaller than predicted by models. This lack of correspondence between model and experiment may be caused by an ill-determination of the boundary condition in the theoretical models, which further demonstrates the necessity of laboratory investigations. Furthermore, the impedance of the dust layer to the ice evaporation was found to be similar to the impedance at room temperature, which means that the temperature profile of the dust layer is not influencing the reduction of the gas production. Finally, we present the results of an extended investigation of the sublimation coefficient, which is an important factor for the description of the sublimation rate of water ice and, thus, an important value for thermophysical modeling of icy bodies in the solar system.
This brief review will discuss the current knowledge on the origin and evolution of the nitrogen atmospheres of the icy bodies in the solar system, particularly of Titan, Triton and Pluto. An important tool to analyse and understand the origin and evolution of these atmospheres can be found in the different isotopic signatures of their atmospheric constituents. The $^{14}$N/$^{15}$N ratio of the N$_2$-dominated atmospheres of these bodies serve as a footprint of the building blocks from which Titan, Triton and Pluto originated and of the diverse fractionation processes that shaped these atmospheres over their entire evolution. Together with other measured isotopic and elemental ratios such as $^{12}$C/$^{13}$C or Ar/N these atmospheres can give important insights into the history of the icy bodies in the solar system, the diverse processes that affect their N$_2$-dominated atmospheres, and the therewith connected solar activity evolution. Titans gaseous envelope most likely originated from ammonia ices with possible contributions from refractory organics. Its isotopic signatures can yet be seen in the - compared to Earth - comparatively heavy $^{14}$N/$^{15}$N ratio of 167.7, even though this value slightly evolved over its history due to atmospheric escape and photodissociation of N$_2$. The origin and evolution of Plutos and Tritons tenuous nitrogen atmospheres remain unclear, even though it might be likely that their atmospheres originated from the protosolar nebula or from comets. An in-situ space mission to Triton such as the recently proposed Trident mission, and/or to the ice giants would be a crucial cornerstone for a better understanding of the origin and evolution of the icy bodies in the outer solar system and their atmospheres in general.
We present an update of the visible and near-infrared colour database of Minor Bodies in the Outer Solar System (MBOSSes), which now includes over 2000 measurement epochs of 555 objects, extracted from over 100 articles. The list is fairly complete as of December 2011. The database is now large enough to enable any dataset with a large dispersion to be safely identified and rejected from the analysis. The selection method used is quite insensitive to individual outliers. Most of the rejected datasets were observed during the early days of MBOSS photometry. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1, 1). The average colours, absolute magnitude, and spectral gradient are listed for each object, as well as the physico-dynamical classes using a classification adapted from Gladman and collaborators. Colour-colour diagrams, histograms, and various other plots are presented to illustrate and investigate class characteristics and trends with other parameters, whose significances are evaluated using standard statistical tests. The colour tables and all plots are also available on the MBOSS colour web page http://www.eso.org/~ohainaut/MBOSS which will be updated when new measurements are published.
The aim of the chapter is to summarize our understanding of the compositional distribution across the different reservoirs of small bodies (main belt asteroids, giant planet trojans, irregular satellites of the giant planets, TNOs, comets). We then use this information to i) discuss current dynamical models (Nice and Grand Tack models), ii) mention possible caveats in these models if any, and iii) draw a preliminary version of the primordial compositional gradient across the solar system before planetary migrations occured. Note that the composition of both planetary satellites (the regular ones) and that of the transient populations (NEOs, centaurs) is not discussed here. We strictly focus on the composition of the main reservoirs of small bodies. The manuscripts objective is to provide a global and synthetic view of small bodies compositions rather than a very detailed one, for specific reviews regarding the composition of small bodies, see papers by Burbine (2014) for asteroids, Emery et al. (2015) for Jupiter trojans, Mumma and Charnley (2011) for comets, and Brown (2012) for KBOs.
Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock-ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.