No Arabic abstract
Directional detection is a promising search strategy to discover galactic Dark Matter. We present a Bayesian analysis framework dedicated to Dark Matter phenomenology using directional detection. The interest of directional detection as a powerful tool to set exclusion limits, to authentify a Dark Matter detection or to constrain the Dark Matter properties, both from particle physics and galactic halo physics, will be demonstrated. However, such results need highly accurate track reconstruction which should be reachable by the MIMAC detector using a dedicated readout combined with a likelihood analysis of recoiling nuclei.
MiMac is a project of micro-TPC matrix of gaseous (He3, CF4) chambers for direct detection of non-baryonic dark matter. Measurement of both track and ionization energy will allow the electron-recoil discrimination, while access to the directionnality of the tracks will open a unique way to distinguish a geniune WIMP signal from any background. First reconstructed tracks of 5.9 keV electrons are presented as a proof of concept.
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating genuine WIMP events from background ones. However, carrying out such a strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC project has been developed: it is based on a gaseous micro-TPC matrix, filled with 3He, CF4 and/or C4H10. Firsts results of low energy nuclei recoils obtained with a low energy neutron field are presented.
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC project has been developed. It is based on a gaseous micro-TPC matrix, filled with 3He, CF4 and/or C4H10. The first results on low energy nuclear recoils (1H and 19F) obtained with a low mono-energetic neutron field are presented. The discovery potential of this search strategy is discussed and illustrated by a realistic case accessible to MIMAC.
A front end ASIC (BiCMOS-SiGe 0.35 mum) has been developed within the framework of the MIMAC detector project, which aims at directional detection of non-baryonic Dark Matter. This search strategy requires 3D reconstruction of low energy (a few keV) tracks with a gaseous muTPC. The development of this front end ASIC is a key point of the project, allowing the 3D track reconstruction. Each ASIC monitors 16 strips of pixels with charge preamplifiers and their time over threshold is provided in real time by current discriminators via two serializing LVDS links working at 320 MHz. The charge is summed over the 16 strips and provided via a shaper. These specifications have been chosen in order to build an auto triggered electronics. An acquisition board and the related software were developed in order to validate this methodology on a prototype chamber. The prototype detector presents an anode where 2 x 96 strips of pixels are monitored.
Directional detection of non-baryonic DarkMatter is a promising search strategy for discriminating WIMP events from background ones. This strategy requires both a measurement of the recoil energy down to a few keV and 3D reconstruction of tracks down to a few mm. The MIMAC project, based on a micro-TPC matrix, filled with CF4 and CHF3 is being developed. The first results of a chamber prototype of this matrix, on low energy nuclear recoils (1H and 19F) obtained with mono-energetic neutron fields are presented. The discovery potential of this search strategy is illustrated by a realistic case accessible to MIMAC.