Do you want to publish a course? Click here

Unveiling the physical properties and kinematics of molecular gas in the Antennae Galaxies (NGC 4038/9) through high resolution CO (J = 3-2) observations

200   0   0.0 ( 0 )
 Added by Junko Ueda
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a ~ 1 (100 pc) resolution 12CO (3-2) map of the nearby intermediate stage interacting galaxy pair NGC 4038/9 (the Antennae galaxies) obtained with the Submillimeter Array. We find that half the CO (3-2) emission originates in the overlap region where most of the tidally induced star formation had been previously found in shorter wavelength images, with the rest being centered on each of the nuclei. The gross distribution is consistent with lower resolution single dish images, but we show for the first time the detailed distribution of the warm and dense molecular gas across this galaxy pair at resolutions comparable to the size of a typical giant molecular complex. While we find that 58% (33/57) of the spatially resolved Giant Molecular Associations (GMAs; a few x 100 pc) are located in the overlap region, only leqq 30% spatially coincides with the optically detected star clusters, suggesting that the bulk of the CO (3-2) emission traces the regions with very recent or near future star formation activity. The spatial distribution of the CO (3-2)/CO (1-0) integrated brightness temperature ratios mainly range between 0.3 and 0.8, which suggests that on average the CO (3-2) line in the Antennae is not completely thermalized and similar to the average values of nearby spirals. A higher ratio is seen in both nuclei and the southern complexes in the overlap region. Higher radiation field associated with intense star formation can account for the nucleus of NGC 4038 and the overlap region, but the nuclear region of NGC 4039 show relatively little star formation or AGN activities and cannot be easily explained. We show kinematical evidence that the high line ratio in NGC 4039 is possibly caused by gas inflow into the counter-rotating central disk.



rate research

Read More

We present 1 (<100 pc) resolution maps of millimeter emission from five molecules-CN, HCN, HCO+, CH3OH, and HNCO-obtained towards NGC 4038, which is the northern galaxy of the mid-stage merger, Antennae galaxies, with the Atacama Large Millimeter/submillimeter Array. Three molecules (CN, CH3OH, and HNCO) were detected for the first time in the nuclear region of NGC 4038. High-resolution mapping reveals a systematic difference in distributions of different molecular species and continuum emission. Active star forming regions identified by the 3 mm and 850 um continuum emission are offset from the gas-rich region associated with the HCN (1-0) and CO (3-2) peaks. The CN (1-0)/HCN (1-0) line ratios are enhanced (CN/HCN = 0.8-1.2) in the star forming regions, suggesting that the regions are photon dominated. The large molecular gas mass (10^8 Msun) within a 0.6 (~60 pc) radius of the CO (3-2) peak and a high dense gas fraction (>20 %) suggested by the HCN (1-0)/CO (3-2) line ratio may signify a future burst of intense star formation there. The shocked gas traced in the CH3OH and HNCO emission indicates sub-kpc scale molecular shocks. We suggest that the molecular shocks may be driven by collisions between inflowing gas and the central massive molecular complex.
65 - J.E. Hibbard 2001
We present new VLA C+D-array HI observations and optical and NIR imaging of the well known interacting system NGC 4038/9, ``The Antennae. The radio data reveal a wealth of gaseous sub-structure both within the main bodies of the galaxies and along the tidal tails. In agreement with previous HI studies, we find that the northern tail has HI along its outer length, but none along its base. We suggest that the HI at the base of this tail has been ionized by massive stars in the disk of NGC 4038. The gas in the southern tail has a bifurcated structure, with one filament lying along the optical tail and another running parallel to it but with no optical counterpart. The two filaments join just before the location of several star forming regions near the end of the tail. The HI velocity field at the end of the tail is dominated by strong velocity gradients which suggest that at this location the tail is bending away from us. We delineate and examine two regions within the tail previously identified as possible sites of a so-called ``tidal dwarf galaxy condensing out of the expanding tidal material. The tail velocity gradients mask any clear kinematic signature of a self-gravitating condensation in this region. A dynamical analysis suggest that there is not enough mass in gas alone for either of these regions to be self-gravitating. Conversely, if they are bound they require a significant contribution to their dynamical mass from evolved stars or dark matter. (Abridged)
We have carried out 12CO(J =2-1) and 12CO(J =3-2) observations at spatial resolutions of 1.0-3.8 pc toward the entirety of loops 1 and 2 and part of loop 3 in the Galactic center with NANTEN2 and ASTE. These new results revealed detailed distributions of the molecular gas and the line intensity ratio of the two transitions, R3-2/2-1. In the three loops, R3-2/2-1 is in a range from 0.1 to 2.5 with a peak at ~ 0.7 while that in the disk molecular gas is in a range from 0.1 to 1.2 with a peak at 0.4. This supports that the loops are more highly excited than the disk molecular gas. An LVG analysis of three transitions, 12CO J =3-2 and 2-1 and 13CO J =2-1, toward six positions in loops 1 and 2 shows density and temperature are in a range 102.2 - 104.7 cm-3 and 15-100 K or higher, respectively. Three regions extended by 50-100 pc in the loops tend to have higher excitation conditions as characterized by R3-2/2-1 greater than 1.2. The highest ratio of 2.5 is found in the most developed foot points between loops 1 and 2. This is interpreted that the foot points indicate strongly shocked conditions as inferred from their large linewidths of 50-100 km s-1, confirming the suggestion by Torii et al. (2010b). The other two regions outside the foot points suggest that the molecular gas is heated up by some additional heating mechanisms possibly including magnetic reconnection. A detailed analysis of four foot points have shown a U shape, an L shape or a mirrored-L shape in the b-v distribution. It is shown that a simple kinematical model which incorporates global rotation and expansion of the loops is able to explain these characteristic shapes.
We study the relationship between dense gas and star formation in the Antennae galaxies by comparing ALMA observations of dense gas tracers (HCN, HCO$^+$, and HNC $mathrm{J}=1-0$) to the total infrared luminosity ($mathrm{L_{TIR}}$) calculated using data from the textit{Herschel} Space Observatory and the textit{Spitzer} Space Telescope. We compare the luminosities of our SFR and gas tracers using aperture photometry and employing two methods for defining apertures. We taper the ALMA dataset to match the resolution of our $mathrm{L_{TIR}}$ maps and present new detections of dense gas emission from complexes in the overlap and western arm regions. Using OVRO CO $mathrm{J}=1-0$ data, we compare with the total molecular gas content, $mathrm{M(H_2)_{tot}}$, and calculate star formation efficiencies and dense gas mass fractions for these different regions. We derive HCN, HCO$^+$ and HNC upper limits for apertures where emission was not significantly detected, as we expect emission from dense gas should be present in most star-forming regions. The Antennae extends the linear $mathrm{L_{TIR}-L_{HCN}}$ relationship found in previous studies. The $mathrm{L_{TIR}-L_{HCN}}$ ratio varies by up to a factor of $sim$10 across different regions of the Antennae implying variations in the star formation efficiency of dense gas, with the nuclei, NGC 4038 and NGC 4039, showing the lowest SFE$_mathrm{dense}$ (0.44 and 0.70 $times10^{-8}$ yr$^{-1}$). The nuclei also exhibit the highest dense gas fractions ($sim 9.1%$ and $sim7.9%$).
121 - Yu Gao 2000
(abridged) We report here a factor of 5.7 higher total CO flux in Arp~244 (the ``Antennae galaxies) than that previously accepted in the literature (thus a total molecular gas mass of 1.5x10$^{10}$ Msun), based on our fully sampled CO(1-0) observations at the NRAO 12m telescope. Our observations show that the molecular gas peaks predominately in the disk-disk overlap region between the nuclei, similar to the far-infrared (FIR) and mid-infrared (MIR) emission. The bulk of the molecular gas is forming into stars with a normal star formation efficiency (SFE) L_{IR}/M(H_2) approx 4.2 Lsun/Msun, same as that of giant molecular clouds in the Galactic disk. Additional supportive evidence is the extremely low fraction of the dense molecular gas in Arp~244, revealed by our detections of the HCN(1-0) emission. We estimate the local SFE indicated by the ratio map of the radio continuum to CO(1-0) emission. Remarkably, the local SFE stays roughly same over the bulk of the molecular gas distribution. Only some localized regions show the highest radio-to-CO ratios that we have identified as the sites of the most intense starbursts with SFE >~ 20 Lsun/Msun. These starburst regions are confined exclusively in the dusty patches seen in the HST images near the CO and FIR peaks where presumably the violent starbursts are heavily obscured. Nevertheless, recent large-scale star formation is going on throughout the system, yet the measured level is more suggestive of a moderate starburst (SFE >~ 10 Lsun/Msun) or a weak to normal star formation (SFE ~ 4 Lsun/Msun). The overall starburst from the bulk of the molecular gas is yet to be initiated as most of the gas further condenses into kpc scale in the final coalescence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا