Do you want to publish a course? Click here

Enhancement of the upper critical field in codoped iron-arsenic high-temperature superconductors

149   0   0.0 ( 0 )
 Added by Franziska Weickert
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first study of codoped iron-arsenide superconductors of the 122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials. H_c2 was investigated by measuring the magnetoresistance in high pulsed magnetic fields up to 64 T. We find, that H_c2 extrapolated to T = 0 is indeed enhanced significantly to ~ 90 T for polycrystalline samples of Ba_0.55K_0.45Fe_1.95Co_0.05As_2 compared to ~75 T for Ba_0.55K_0.45Fe_2As_2 and BaFe_1.8Co_0.2As_2 single crystals. Codoping thus is a promising way for the systematic optimization of iron-arsenic based superconductors for magnetic-field and high-current applications.



rate research

Read More

The transition temperature Tc of cuprate superconductors falls when the doping p is reduced below a certain optimal value. It is unclear whether this fall is due to strong phase fluctuations or to a decrease in the pairing gap. Different interpretations of photoemission data disagree on the evolution of the pairing gap and different estimates of the upper critical field Hc2 are in sharp contradiction. Here we resolve this contradiction by showing that superconducting fluctuations in the underdoped cuprate Eu-LSCO, measured via the Nernst effect, have a characteristic field scale that falls with underdoping. The critical field Hc2 dips at p = 0.11, showing that superconductivity is weak where stripe order is strong. In the archetypal cuprate superconductor YBCO, Hc2 extracted from other measurements has the same doping dependence, also with a minimum at p = 0.11, again where stripe order is present. We conclude that competing states such as stripe order weaken superconductivity and this, rather than phase fluctuations, causes Tc to fall as cuprates become underdoped.
The upper critical fields ($H_{c2}$) of the single crystals $rm(Sr,Na)Fe_2As_2$ and $rm Ba_{0.55}K_{0.45}Fe_2As_2$ were determined by means of measuring the electrical resistivity, $ rho_{xx}(mu_0H)$, using the facilities of pulsed magnetic field at Los Alamos. In general, these compounds possess a very large upper critical field ($H_{c2}(0)$) with a weak anisotropic effect. The detailed curvature of $H_{c2}(T_c)$ may depend on the magnetic field orientation and the sample compositions. We argue that such a difference mainly results from the multi-band effect, which might be modified via doping.
Upper critical field, H_c2, in quasi-1D superconductors is investigated by the weak coupling renormalization group technique. It is shown that H_c2 greatly exceeds not only the Pauli limit, but also the conventional paramagnetic limit of the Flude-Ferrell-Larkin-Ovchinnikov (FFLO) state. This increase is mainly due to quasi-1D fluctuations effect as triggered by interference between unconventional superconductivity and density-wave instabilities. Our results give a novel viewpoint on the large H_c2 observed in TMTSF-salts in terms of a d-wave FFLO state that is predicted to be verified by the H_c2 measurements under pressure.
We present measurements of the superconducting critical temperature Tc and upper critical field Hc2 as a function of pressure in the transition metal dichalcogenide 2H-NbS2 up to 20 GPa. We observe that Tc increases smoothly from 6K at ambient pressure to about 8.9K at 20GPa. This range of increase is comparable to the one found previously in 2H-NbSe2. The temperature dependence of the upper critical field Hc2(T) of 2H-NbS2 varies considerably when increasing the pressure. At low pressures, Hc2(0) decreases, and at higher pressures both Tc and Hc2(0) increase simultaneously. This points out that there are pressure induced changes of the Fermi surface, which we analyze in terms of a simplified two band approach.
134 - Chang Liu , Takeshi Kondo , Ni Ni 2009
We use angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of CaFe2As2 - parent compound of a pnictide superconductor. We find that the structural and magnetic transition is accompanied by a three- to two-dimensional (3D-2D) crossover in the electronic structure. Above the transition temperature (Ts) Fermi surfaces around Gamma and X points are cylindrical and quasi-2D. Below Ts the former becomes a 3D ellipsoid, while the latter remains quasi-2D. This finding strongly suggests that low dimensionality plays an important role in understanding the superconducting mechanism in pnictides.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا