No Arabic abstract
We study light-beam propagation in a nonlinear coupler with an asymmetric double-channel waveguide and derive various analytical forms of optical modes. The results show that the symmetry-preserving modes in a symmetric double-channel waveguide are deformed due to the asymmetry of the two-channel waveguide, yet such a coupler supports the symmetry-breaking modes. The dispersion relations reveal that the system with self-focusing nonlinear response supports the degenerate modes, while for self-defocusingmedium the degenerate modes do not exist. Furthermore, nonlinear manipulation is investigated by launching optical modes supported in double-channel waveguide into a nonlinear uniform medium.
Spontaneous symmetry breaking is central to our understanding of physics and explains many natural phenomena, from cosmic scales to subatomic particles. Its use for applications requires devices with a high level of symmetry, but engineered systems are always imperfect. Surprisingly, the impact of such imperfections has barely been studied, and restricted to a single asymmetry. Here, we experimentally study spontaneous symmetry breaking with two controllable asymmetries. We remarkably find that features typical of spontaneous symmetry breaking, while destroyed by one asymmetry, can be restored by introducing a second asymmetry. In essence, asymmetries are found to balance each other. Our study illustrates aspects of the universal unfolding of the pitchfork bifurcation, and provides new insights into a key fundamental process. It also has practical implications, showing that asymmetry can be exploited as an additional degree of freedom. In particular, it would enable sensors based on symmetry breaking or exceptional points to reach divergent sensitivity even in presence of imperfections. Our experimental implementation built around an optical fiber ring additionally constitutes the first observation of the polarization symmetry breaking of passive driven nonlinear resonators.
We investigate competition between two phase transitions of the second kind induced by the self-attractive nonlinearity, viz., self-trapping of the leaky modes, and spontaneous symmetry breaking (SSB) of both fully trapped and leaky states. We use a one-dimensional mean-field model, which combines the cubic nonlinearity and a double-well-potential (DWP) structure with an elevated floor, which supports leaky modes (quasi-bound states) in the linear limit. The setting can be implemented in nonlinear optics and BEC. The order in which the SSB and self-trapping transitions take place with the growth of the nonlinearity strength depends on the height of the central barrier of the DWP: the SSB happens first if the barrier is relatively high, while self-trapping comes first if the barrier is lower. The SSB of the leaky modes is characterized by specific asymmetry of their radiation tails, which, in addition, feature a resonant dependence on the relation between the total size of the system and radiation wavelength. As a result of the SSB, the instability of symmetric modes initiates spontaneous Josephson oscillations. Collisions of freely moving solitons with the DWP structure admit trapping of an incident soliton into a state of persistent shuttle motion, due to emission of radiation. The study is carried out numerically, and basic results are explained by means of analytical considerations.
We demonstrate that the toroidal dipolar response can be realized in the optical regime by designing a feasible nanostructured metamaterial, comprising asymmetric double-bar magnetic resonators assembled into a toroid-like configuration. It is confirmed numerically that an optical toroidal dipolar moment dominates over other moments. This response is characterized by a strong confinement of an E-field component at the toroid center, oriented perpendicular to the H-vortex plane. The resonance-enhanced optical toroidal response can provide an experimental avenue for various interesting optical phenomena associated with the elusive toroidal moment.
We perform phase-sensitive near-field scanning optical microscopy on photonic-crystal waveguides. The observed intricate field patterns are analyzed by spatial Fourier transformations, revealing several guided TE- and TM-like modes. Using the reconstruction algorithm proposed by Ha, et al. (Opt. Lett. 34 (2009)), we decompose the measured two-dimensional field pattern in a superposition of propagating Bloch modes. This opens new possibilities to study specific modes in near-field measurements. We apply the method to study the transverse behavior of a guided TE-like mode, where the mode extends deeper in the surrounding photonic crystal when the band edge is approached.
We propose a model of a nonlinear double-well potential (NDWP), alias a double-well pseudopotential, with the objective to study an alternative implementation of the spontaneous symmetry breaking (SSB) in Bose-Einstein condensates (BECs) and optical media, under the action of a potential with two symmetric minima. In the limit case when the NDWP structure is induced by the local nonlinearity coefficient represented by a set of two delta-functions, a fully analytical solution is obtained for symmetric, antisymmetric and asymmetric states. In this solvable model, the SSB bifurcation has a fully subcritical character. Numerical analysis, based on both direct simulations and computation of stability eigenvalues, demonstrates that, while the symmetric states are stable up to the SSB bifurcation point, both symmetric and emerging asymmetric states, as well as all antisymmetric ones, are unstable in the model with the delta-functions. In the general model with a finite width of the nonlinear-potential wells, the asymmetric states quickly become stable, simultaneously with the switch of the SSB bifurcation from the subcritical to supercritical type. Antisymmetric solutions may also get stabilized in the NDWP structure of the general type, which gives rise to a bistability between them and asymmetric states. The symmetric states require a finite norm for their existence, an explanation to which is given. A full diagram for the existence and stability of the trapped states in the model is produced. Experimental observation of the predicted effects should be possible in BEC formed by several hundred atoms.