Do you want to publish a course? Click here

Josephson effect between triplet superconductors through a ferromagnetic barrier of finite width

435   0   0.0 ( 0 )
 Added by Bogusz Bujnowski
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Charge and spin transport in a junction involving two triplet superconductors and a ferromagnetic barrier are studied. We use Bogoliubov-de Gennes wavefunctions to construct the Greens function, from which we obtain the Josephson currents in terms of the Andreev reflection coefficients. We focus on the consequences of a finite barrier width for the occurrence of 0-pi transitions and for the spin currents, and examine the appropriateness of the common delta-function approximation for the tunneling region.



rate research

Read More

474 - M. Houzet , A. I. Buzdin 2007
We study the Josephson current through a ferromagnetic trilayer, both in the diffusive and clean limits. For colinear (parallel or antiparallel) magnetizations in the layers, the Josephson current is small due to short range proximity effect in superconductor/ferromagnet structures. For non colinear magnetizations, we determine the conditions for the Josephson current to be dominated by another contribution originating from long range triplet proximity effect.
We study the Josephson effect between a conventional s-wave superconductor and a non-centrosymmetric superconductor with Rashba spin-orbit coupling. Rashba spin-orbit coupling affects the Josephson pair tunneling in a characteristic way. The Josephson coupling can be decomposed into two parts, a `spin-singlet-like and a `spin-triplet-like component. The latter component can lead to shift of the Josephson phase by pi relative to the former coupling. This has important implications on interference effects and may explain some recent experimental results for the Al/CePt3Si junction.
The microscopic theory of Josephson effect in point contacts between two-band superconductors is developed. The general expression for the Josephson current, which is valid for arbitrary temperatures, is obtained. We considered the dirty superconductors with interband scattering, which produces the coupling of the Josephson currents between different bands. The influence of phase shifts and interband scattering rates in the banks is analyzed near critical temperature Tc. It is shown that for some values of parameters the critical current can be negative, which means the pi-junction behavior.
We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critical currents of 0 and pi parts. The ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7% of the magnetic flux quantum Phi_0. The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.
In the past year, several groups have observed evidence for long-range spin-triplet supercurrent in Josephson junctions containing ferromagnetic (F) materials. In our work, the spin-triplet pair correlations are created by non-collinear magnetizations between a central Co/Ru/Co synthetic antiferromagnet (SAF) and two outer thin F layers. Here we present data showing that the spin-triplet supercurrent is enhanced up to 20 times after our samples are subject to a large in-plane magnetizing field. This surprising result can be explained if the Co/Ru/Co SAF undergoes a spin-flop transition, whereby the two Co layer magnetizations end up perpendicular to the magnetizations of the two thin F layers. Direct experimental evidence for the spin-flop transition comes from scanning electron microscopy with polarization analysis and from spin-polarized neutron reflectometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا