Do you want to publish a course? Click here

Search for X-Ray Emission Associated with the Shapley Supercluster with Suzaku

159   0   0.0 ( 0 )
 Added by Ikuyuki Mitsuishi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Suzaku performed observations of 3 regions in and around the Shapley supercluster: a region located between A3558 and A3556, at ~0.9 times the virial radii of both clusters, and two other regions at 1{deg}and 4{deg}away from the first pointing. The 4{deg}-offset observation was used to evaluate the Galactic foreground emission. We did not detect significant redshifted Oxygen emission lines (O VII and O VIII) in the spectra of all three pointings, after subtracting the contribution of foreground and background emission. An upper limit for the redshifted O VIII Ka line intensity of the warm-hot intergalactic medium (WHIM) is 1.5 times 10^-7 photons s^-1 cm^-2 arcmin^-2, which corresponds to an overdensity of ~380 (Z/0.1 Z_solar)^{-1/2} (L/3 Mpc)^{-1/2}, assuming T=3times10^6 K. We found excess continuum emission in the 1{deg}-offset and on-filament regions, represented by thermal models with kT ~1 keV and ~2 keV, respectively. The redshifts of both 0 and that of the supercluster (0.048) are consistent with the observed spectra. The ~1 keV emission can be also fitted with Ne-rich Galactic (zero redshift) thin thermal emission. Radial intensity profile of 2 keV component suggests contribution from A3558 and A3556, but with significant steepening of the intensity slope in the outer region of A3558. Finally, we summarized the previous Suzaku search for the WHIM and discussed the feasibility of constraining the WHIM. An overdensity of < 400 can be detectable using O VII and O VIII emission lines in a range of 1.4times10^6 K < T < 5times10^6 K or a continuum emission in a relatively high temperature range T > 5times10^6 K with the Suzaku XIS. The non detection with Suzaku suggests that typical line-of-sight average overdensity is < 400.



rate research

Read More

The brightest cluster radio halo known resides in the Coma cluster of galaxies. The relativistic electrons producing this diffuse synchrotron emission should also produce inverse Compton emission that becomes competitive with thermal emission from the ICM at hard X-ray energies. Thus far, claimed detections of this emission in Coma are controversial (Fusco-Femiano et al. 2004; Rossetti & Molendi 2004). We present a Suzaku HXD-PIN observation of the Coma cluster in order to nail down its non-thermal hard X-ray content. The contribution of thermal emission to the HXD-PIN spectrum is constrained by simultaneously fitting thermal and non-thermal models to it and a spatially equivalent spectrum derived from an XMM-Newton mosaic of the Coma field (Schuecker et al. 2004). We fail to find statistically significant evidence for non-thermal emission in the spectra, which are better described by only a single or multi-temperature model for the ICM. Including systematic uncertainties, we derive a 90% upper limit on the flux of non-thermal emission of 6.0x10^-12 erg/s/cm^2 (20-80 keV, for photon index of 2.0), which implies a lower limit on the cluster-averaged magnetic field of B>0.15 microG. Our flux upper limit is 2.5x lower than the detected non-thermal flux from RXTE (Rephaeli & Gruber 2002) and BeppoSAX (Fusco-Femiano et al. 2004). However, if the non-thermal hard X-ray emission in Coma is more spatially extended than the observed radio halo, the Suzaku HXD-PIN may miss some fraction of the emission. A detailed investigation indicates that ~50-67% of the emission might go undetected, which could make our limit consistent with these detections. The thermal interpretation of the hard Coma spectrum is consistent with recent analyses of INTEGRAL (Eckert et al. 2007) and Swift (Ajello et al. 2009) data.
We present two new examples of galaxies undergoing transformation in the Shapley supercluster core. These low-mass (stellar mass from 0.4E10 to 1E10 Msun) galaxies are members of the two clusters SC-1329-313 (z=0.045) and SC-1327-312 (z=0.049). Integral-field spectroscopy complemented by imaging in ugriK bands and in Halpha narrow-band are used to disentangle the effects of tidal interaction (TI) and ram-pressure stripping (RPS). In both galaxies, SOS-61086 and SOS-90630, we observe one-sided extraplanar ionized gas extending respectively 30kpc and 41kpc in projection from their disks. The galaxies gaseous disks are truncated and the kinematics of the stellar and gas components are decoupled, supporting the RPS scenario. The emission of the ionized gas extends in the direction of a possible companion for both galaxies suggesting a TI. The overall gas velocity field of SOS-61086 is reproduced by ad hoc N-body/hydrodynamical simulations of RPS acting almost face-on and starting about 250Myr ago, consistent with the age of the young stellar populations. A link between the observed gas stripping and the cluster-cluster interaction experienced by SC-1329-313 and A3562 is suggested. Simulations of ram pressure acting almost edge-on are able to fully reproduce the gas velocity field of SOS-90630, but cannot at the same time reproduce the extended tail of outflowing gas. This suggests that an additional disturbance from a TI is required. This study adds a piece of evidence that RPS may take place in different environments with different impacts and witnesses the possible effect of cluster-cluster merger on RPS.
No transient electromagnetic emission has yet been found in association to fast radio bursts (FRBs), the only possible exception (3sigma confidence) being the putative gamma-ray signal detected in Swift/BAT data in the energy band 15-150 keV at the time and position of FRB131104. Systematic searches for hard X/gamma-ray counterparts to other FRBs ended up with just lower limits on the radio/gamma-ray fluence ratios. In 2001, at the time of the earliest discovered FRBs, the BeppoSAX Gamma-Ray Burst Monitor (GRBM) was one of the most sensitive open sky gamma-ray monitors in the 40-700~keV energy band. During its lifetime, one of the FRBs with the highest radio fluence ever recorded, FRB010724 (800 +- 400 Jy ms), also known as the Lorimer burst, was promptly visible to the GRBM. Upon an accurate modeling of the GRBM background, eased by its equatorial orbit, we searched for a possible gamma-ray signal in the first 400 s following the FRB, similar to that claimed for FRB131104 and found no significant emission down to a 5-sigma limit in the range (0.24-4.7)x10^-6 erg cm^-2 (corresponding to 1 and 400 s integration time, respectively), in the energy band 40-700 keV. This corresponds to eta = F_radio/F_gamma>10^{8-9} Jy ms erg^-1 cm^2, i.e. the deepest limit on the ratio between radio and gamma-ray fluence, which rules out a gamma-ray counterpart similar to that of FRB131104. We discuss the implications on the possible mechanisms and progenitors that have been proposed in the literature, also taking into account its relatively low dispersion measure (375 +- 3 pc cm^-3) and an inferred redshift limit of z<0.4.
We studied the high temperature plasma in the direction of the Sculptor supercluster at z=0.108 with Suzaku. Suzaku carried out four observations in the supercluster: namely, A2811, A2811 offset, A2804, A2801 regions in 2005 Nov.--Dec., including the regions beyond the virial radii of these clusters. The study needed precise background estimation because the measured intensity of the redshifted lines, especially those from oxygen, were strongly affected by the the Galactic emission. The spectra taken in the regions outside of the virial radii of the member clusters were used as the background which included both the Galactic and Cosmic X-ray Background (CXB) components. We also used the background data which were taken near the Sculptor supercluster. Temperature and metal abundance profiles were determined to the virial radii of the member clusters, and then we searched for the oxygen line emission in the region outside of the virial radii of the clusters. As a result, the temperature of the clusters decreased toward the virial radii, and the spectral fits for the filament region did not require extra component other than the Galactic and CXB components. We constrained the intensities of O VII and O VIII lines to be less than 8.1 and 5.1 photons cm^-2 s^-1 arcmin^-2, respectively, as 2-sigma upper limits. The intensity of O VII indicates n_H < 1.6e-5 cm^-3 (Z/0.1 Z_solar)^-1/2 (L/25 Mpc)^-1/2, which corresponds to an over density, delta < 60 (Z/0.1 Z_solar)^-1/2 (L/25 Mpc)^-1/2.
118 - Satoru Katsuda 2011
X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnants rim are depleted to about 0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously enhanced abundances (up to about 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the enhanced abundance regions commonly show a strong emission feature at about 0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O Kalpha appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently enhanced metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا