Wire network behavior in superconducting Nb films with diluted triangular arrays of holes


Abstract in English

We present transport measurement results on superconducting Nb films with diluted triangular arrays (honeycomb and kagom{e}) of holes. The patterned films have large disk-shaped interstitial regions even when the edge-to-edge separations between nearest neighboring holes are comparable to the coherence length. Changes in the field interval of two consecutive minima in the field dependent resistance $R(H)$ curves are observed. In the low field region, fine structures in the $R(H)$ and $T_c(H)$ curves are identified in both arrays. Comparison of experimental data with calculation results shows that these structures observed in honeycomb and kagom{e} hole arrays resemble those in wire networks with triangular and $T_3$ symmetries, respectively. Our findings suggest that even in these specified periodic hole arrays with very large interstitial regions, the low field fine structures are determined by the connectivity of the arrays

Download