The 2008 outburst of the atoll source IGR J17473--2721 was observed by INTEGRAL, RXTE and Swift. Tens of type-I X-ray bursts were found in this outburst. Joint observations provide sufficient data to look into the behavior of IGR J17473--2721 at the rising part of the outburst. We find that the joint energy spectra can be well fitted with a model composed of a blackbody and a cutoff power-law, with a cutoff energy decreasing from $ sim$ 150 keV to $sim$ 40 keV as the source leaves the quiescent state toward the low hard state. This fits into a scenario in which the corona is cooled by the soft X-rays along the outburst evolution, as observed in several other atoll sources. By using the flux measured in the 1.5--30 keV band of the type-I bursts during the outburst, we find that the linear relationship between the burst duration and the flux still holds for those bursts that occur at the decaying part of the low hard state, but with a different slope than the overall one that was estimated with the bursts happening in the whole extent of, and for the rest of the low hard state. The significance of such a dichotomy in the type-I X-ray bursts is $sim$ 3 $sigma$ under an F-test. Similar results are hinted at as well with the broader energy-band that was adopted recently. This dichotomy may be understood in a scenario where part of the accreting material forms a corona on the way of falling onto the surface of the neutron star during the decaying part of the low hard state. Based on the accretion rates of the preceding LHS, estimated from type-I X-ray bursts and from persistent emission, at least for IGR J17473-2721, most of the accretion material may fall on the neutron star (NS) surface in the LHS. Considering the burst behavior in the context of the outburst indicates a corona formed on top of the disk rather than on the NS surface.