The stellar masses and specific star-formation rates of submillimetre galaxies


Abstract in English

Establishing the stellar masses (M*), and hence specific star-formation rates (sSFRs) of submillimetre galaxies (SMGs) is crucial for determining their role in the cosmic galaxy/star formation. However, there is as yet no consensus over the typical M* of SMGs. Specifically, even for the same set of SMGs, the reported average M* have ranged over an order of magnitude, from ~5x10^10 Mo to ~5x10^11 Mo. Here we study how different methods of analysis can lead to such widely varying results. We find that, contrary to recent claims in the literature, potential contamination of IRAC 3-8 um photometry from hot dust associated with an active nucleus is not the origin of the published discrepancies in derived M*. Instead, we expose in detail how inferred M* depends on assumptions made in the photometric fitting, and quantify the individual and cumulative effects of different choices of initial mass function, different brands of evolutionary synthesis models, and different forms of assumed star-formation history. We review current observational evidence for and against these alternatives as well as clues from the hydrodynamical simulations, and conclude that, for the most justifiable choices of these model inputs, the average M* of SMGs is ~2x10^11 Mo. We also confirm that this number is perfectly reasonable in the light of the latest measurements of their dynamical masses, and the evolving M* function of the overall galaxy population. M* of this order imply that the average sSFR of SMGs is comparable to that of other star-forming galaxies at z>2, at 2-3 Gyr^-1. This supports the view that, while rare outliers may be found at any M*, most SMGs simply form the top end of the main-sequence of star-forming galaxies at these redshifts. Conversely, this argues strongly against the viewpoint that SMGs are extreme pathological objects, of little relevance in the cosmic history of star-formation.

Download