No Arabic abstract
In this paper we consider an extremal problem in geometry. Let $lambda$ be a real number and $A$, $B$ and $C$ be arbitrary points on the unit circle $Gamma$. We give full characterization of the extremal behavior of the function $f(M,lambda)=MA^lambda+MB^lambda+MC^lambda$, where $M$ is a point on the unit circle as well. We also investigate the extremal behavior of $sum_{i=1}^nXP_i$, where $P_i, i=1,...,n$ are the vertices of a regular $n$-gon and $X$ is a point on $Gamma$, concentric to the circle circumscribed around $P_1...P_n$. We use elementary analytic and purely geometric methods in the proof.
In this paper we investigate the extremal properties of the sum $$sum_{i=1}^n|MA_i|^{lambda},$$ where $A_i$ are vertices of a regular simplex, a cross-polytope (orthoplex) or a cube and $M$ varies on a sphere concentric to the sphere circumscribed around one of the given polytopes. We give full characterization for which points on $Gamma$ the extremal values of the sum are obtained in terms of $lambda$. In the case of the regular dodecahedron and icosahedron in $mathbb{R}^3$ we obtain results for which values of $lambda$ the corresponding sum is independent of the position of $M$ on $Gamma$. We use elementary analytic and purely geometric methods.
General results on convex bodies are reviewed and used to derive an exact closed-form parametric formula for the boundary of the geometric (Minkowski) sum of $k$ ellipsoids in $n$-dimensional Euclidean space. Previously this was done through iterative algorithms in which each new ellipsoid was added to an ellipsoid approximation of the sum of the previous ellipsoids. Here we provide one shot formulas to add $k$ ellipsoids directly with no intermediate approximations required. This allows us to observe a new degree of freedom in the family of ellipsoidal bounds on the geometric sum. We demonstrate an application of these tools to compute the reachable set of a discrete-time dynamical system.
We show that Connes B-operator on a cyclic differential graded k-module M is a model for the canonical circle action on the geometric realization of M. This implies that the negative cyclic homology and the periodic cyclic homology of a differential graded category can be identified with the homotopy fixed points and the Tate fixed points of the circle action on its Hochschild complex.
We study densities of functionals over uniformly bounded triangulations of a Delaunay set of vertices, and prove that the minimum is attained for the Delaunay triangulation if this is the case for finite sets.
Non-periodic systems have become more important in recent years, both theoretically and practically. Their description via Delone sets requires the extension of many standard concepts of crystallography. Here, we summarise some useful notions of symmetry and aperiodicity, with special focus on the concept of the hull of a Delone set. Our aim is to contribute to a more systematic and consistent use of the different notions.