Do you want to publish a course? Click here

Conductance fluctuations in graphene devices with superconducting contacts in different charge density regimes

79   0   0.0 ( 0 )
 Added by Frank Freitag
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Conductions fluctuations (CF) are studied in single layer graphene devices with superconducting source and drain contacts made from aluminium. The CF are found to be enhanced by superconductivity by a factor of 1.4 to 2. This (near) doubling of the CF indicates that the phase coherence length is l_phi >= L/2. As compared to previous work, we find a relatively weak dependence of the CF on the gate voltage, and hence on the carrier density. We also demonstrate that whether the CF are larger or smaller at the charge neutrality point can be strongly dependent on the series resistance R_C, which needs to be subtracted.

rate research

Read More

We study fluctuations of the conductance of micron-sized graphene devices as a function of the Fermi energy and magnetic field. The fluctuations are studied in combination with analysis of weak localization which is determined by the same scattering mechanisms. It is shown that the variance of conductance fluctuations depends not only on inelastic scattering that controls dephasing but also on elastic scattering. In particular, contrary to its effect on weak localization, strong intervalley scattering suppresses conductance fluctuations in graphene. The correlation energy, however, is independent of the details of elastic scattering and can be used to determine the electron temperature of graphene structures.
We investigate the mesoscopic disorder induced rms conductance variance $delta G$ in a few layer graphene nanoribbon (FGNR) contacted by two superconducting (S) Ti/Al contacts. By sweeping the back-gate voltage, we observe pronounced conductance fluctuations superimposed on a linear background of the two terminal conductance G. The linear gate-voltage induced response can be modeled by a set of inter-layer and intra-layer capacitances. $delta G$ depends on temperature T and source-drain voltage $V_{sd}$. $delta G$ increases with decreasing T and $|V_{sd}|$. When lowering $|V_{sd}|$, a pronounced cross-over at a voltage corresponding to the superconducting energy gap $Delta$ is observed. For $|V_{sd}|ltequiv Delta$ the fluctuations are markedly enhanced. Expressed in the conductance variance $G_{GS}$ of one graphene-superconducutor (G-S) interface, values of 0.58 e^2/h are obtained at the base temperature of 230 mK. The conductance variance in the sub-gap region are larger by up to a factor of 1.4-1.8 compared to the normal state. The observed strong enhancement is due to phase coherent charge transfer caused by Andreev reflection at the nanoribbon-superconductor interface.
We investigate conductance fluctuations as a function of carrier density $n$ and magnetic field in diffusive mesoscopic samples made from monolayer and bilayer graphene. We show that the fluctuations correlation energy and field, which are functions of the diffusion coefficient, have fundamentally different variations with $n$, illustrating the contrast between massive and massless carriers. The field dependent fluctuations are nearly independent of $n$, but the $n$-dependent fluctuations are not universal and are largest at the charge neutrality point. We also measure the second order conductance fluctuations (mesoscopic rectification). Its field asymmetry, due to electron-electron interaction, decays with conductance, as predicted for diffusive systems.
We investigate the thermal transport properties of a temperature-biased Josephson tunnel junction composed of two different superconductors. We show that this simple system can provide a large negative differential thermal conductance (NDTC) with a peak-to-valley ratio of $sim 3$ in the transmitted electronic heat current. The NDTC is then exploited to outline the caloritronic analogue of the tunnel diode, which can exhibit a modulation of the output temperature as large as 80 mK at a bath temperature of 50 mK. Moreover, this device may work in a regime of thermal hysteresis that can be used to store information as a thermal memory. On the other hand, the NDTC effect offers the opportunity to conceive two different designs of a thermal transistor, which might operate as a thermal switch or as an amplifier/modulator. The latter shows a heat amplification factor $>1$ in a 500-mK-wide working region of the gate temperature. After the successful realization of heat interferometers and thermal diodes, this kind of structures would complete the conversion of the most important electronic devices in their thermal counterparts, breaking ground for coherent caloritronics nanocircuits where heat currents can be manipulated at will.
Measurement and theory of the two-terminal conductance of monolayer and bilayer graphene in the quantum Hall regime are compared. We examine features of conductance as a function of gate voltage that allow monolayer, bilayer, and gapped samples to be distinguished, including N-shaped distortions of quantum Hall plateaus and conductance peaks and dips at the charge neutrality point. Generally good agreement is found between measurement and theory. Possible origins of discrepancies are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا