Weak martingale representation for continuous Markov processes and application to quadratic growth BSDEs


Abstract in English

In this paper we prove that every random variable of the form $F(M_T)$ with $F:real^d toreal$ a Borelian map and $M$ a $d$-dimensional continuous Markov martingale with respect to a Markov filtration $mathcal{F}$ admits an exact integral representation with respect to $M$, that is, without any orthogonal component. This representation holds true regardless any regularity assumption on $F$. We extend this result to Markovian quadratic growth BSDEs driven by $M$ and show they can be solved without an orthogonal component. To this end, we extend first existence results for such BSDEs under a general filtration and then obtain regularity properties such as differentiability for the solution process.

Download