Physics of Caustics and Protein Folding: Mathematical Parallels


Abstract in English

The energy for protein folding arises from multiple sources and is not large in total. In spite of the many specific successes of energy landscape and other approaches, there still seems to be some missing guiding factor that explains how energy from diverse small sources can drive a complex molecule to a unique state. We explore the possibility that the missing factor is in the geometry. A comparison of folding with other physical phenomena, together with analytic modeling of a molecule, led us to analyze the physics of optical caustic formation and of folding behavior side-by-side. The physics of folding and caustics is ostensibly very different but there are several strong parallels. This comparison emphasizes the mathematical similarity and also identifies differences. Since the 1970s, the physics of optical caustics has been developed to a very high degree of mathematical sophistication using catastrophe theory. That kind of quantitative application of catastrophe theory has not previously been applied to folding nor have the points of similarity with optics been identified or exploited. A putative underlying physical link between caustics and folding is a torsion wave of non-constant wave speed, propagating on the dihedral angles and $Psi$ found in an analytical model of the molecule. Regardless of whether we have correctly identified an underlying link, the analogy between caustic formation and folding is strong and the parallels (and differences) in the physics are useful.

Download