No Arabic abstract
The energy for protein folding arises from multiple sources and is not large in total. In spite of the many specific successes of energy landscape and other approaches, there still seems to be some missing guiding factor that explains how energy from diverse small sources can drive a complex molecule to a unique state. We explore the possibility that the missing factor is in the geometry. A comparison of folding with other physical phenomena, together with analytic modeling of a molecule, led us to analyze the physics of optical caustic formation and of folding behavior side-by-side. The physics of folding and caustics is ostensibly very different but there are several strong parallels. This comparison emphasizes the mathematical similarity and also identifies differences. Since the 1970s, the physics of optical caustics has been developed to a very high degree of mathematical sophistication using catastrophe theory. That kind of quantitative application of catastrophe theory has not previously been applied to folding nor have the points of similarity with optics been identified or exploited. A putative underlying physical link between caustics and folding is a torsion wave of non-constant wave speed, propagating on the dihedral angles and $Psi$ found in an analytical model of the molecule. Regardless of whether we have correctly identified an underlying link, the analogy between caustic formation and folding is strong and the parallels (and differences) in the physics are useful.
A geometric analysis of protein folding, which complements many of the models in the literature, is presented. We examine the process from unfolded strand to the point where the strand becomes self-interacting. A central question is how it is possible that so many initial configurations proceed to fold to a unique final configuration. We put energy and dynamical considerations temporarily aside and focus upon the geometry alone. We parameterize the structure of an idealized protein using the concept of a ribbon from differential geometry. The deformation of the ribbon is described by introducing a generic twisting Ansatz. The folding process in this picture entails a change in shape guided by the local amino acid geometry. The theory is reparamaterization invariant from the start, so the final shape is independent of folding time. We develop differential equations for the changing shape. For some parameter ranges, a sine-Gordon torsion soliton is found. This purely geometric waveform has properties similar to dynamical solitons. Namely: A threshold distortion of the molecule is required to initiate the soliton, after which, small additional distortions do not change the waveform. In this analysis, the soliton twists the molecule until bonds form. The analysis reveals a quantitative relationship between the geometry of the amino acids and the folded form.
Water plays a fundamental role in protein stability. However, the effect of the properties of water on the behaviour of proteins is only partially understood. Several theories have been proposed to give insight into the mechanisms of cold and pressure denaturation, or the limits of temperature and pressure above which no protein has a stable, functional state, or how unfolding and aggregation are related. Here we review our results based on a theoretical approach that can rationalise the water contribution to protein solutions free energy. We show, using Monte Carlo simulations, how we can rationalise experimental data with our recent results. We discuss how our findings can help develop new strategies for the design of novel synthetic biopolymers or possible approaches for mitigating neurodegenerative pathologies.
This is a sequel to the paper [K. Fujii : SIGMA {bf 7} (2011), 022, 12 pages]. In this paper we treat a non-Gaussian integral based on a quartic polynomial and make a mathematical experiment by use of MATHEMATICA whether the integral is written in terms of its discriminant or not.
In spite of decades of research, much remains to be discovered about folding: the detailed structure of the initial (unfolded) state, vestigial folding instructions remaining only in the unfolded state, the interaction of the molecule with the solvent, instantaneous power at each point within the molecule during folding, the fact that the process is stable in spite of myriad possible disturbances, potential stabilization of trajectory by chaos, and, of course, the exact physical mechanism (code or instructions) by which the folding process is specified in the amino acid sequence. Simulations based upon microscopic physics have had some spectacular successes and continue to improve, particularly as super-computer capabilities increase. The simulations, exciting as they are, are still too slow and expensive to deal with the enormous number of molecules of interest. In this paper, we introduce an approximate model based upon physics, empirics, and information science which is proposed for use in machine learning applications in which very large numbers of sub-simulations must be made. In particular, we focus upon machine learning applications in the learning phase and argue that our model is sufficiently close to the physics that, in spite of its approximate nature, can facilitate stepping through machine learning solutions to explore the mechanics of folding mentioned above. We particularly emphasize the exploration of energy flow (power) within the molecule during folding, the possibility of energy scale invariance (above a threshold), vestigial information in the unfolded state as attractive targets for such machine language analysis, and statistical analysis of an ensemble of folding micro-steps.
A brief summary of recent developments in mathematical diffraction theory is given. Particular emphasis is placed on systems with aperiodic order and continuous spectral components. We restrict ourselves to some key results and refer to the literature for further details.