A Comparison of Stripe Modulations in La$_{1.875}$Ba$_{0.125}$CuO$_4$ and La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$


Abstract in English

We report combined soft and hard x-ray scattering studies of the electronic and lattice modulations associated with stripe order in La$_{1.875}$Ba$_{0.125}$CuO$_4$ and La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$. We find that the amplitude of both the electronic modulation of the hole density and the strain modulation of the lattice is significantly larger in La$_{1.875}$Ba$_{0.125}$CuO$_4$ than in La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ and is also better correlated. The in-plane correlation lengths are isotropic in each case; for La$_{1.875}$Ba$_{0.125}$CuO$_4$, $xi^{hole}=255pm 5$ AA whereas for La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$F, $xi^{hole}=111pm 7$ AA. We find that the modulations are temperature independent in La$_{1.875}$Ba$_{0.125}$CuO$_4$ in the low temperature tetragonal phase. In contrast, in La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$, the amplitude grows smoothly from zero, beginning 13 K below the LTT phase transition. We speculate that the reduced average tilt angle in La$_{1.875}$Ba$_{0.125}$CuO$_4$ results in reduced charge localization and incoherent pinning, leading to the longer correlation length and enhanced periodic modulation amplitude.

Download