No Arabic abstract
Topological insulators are insulating in the bulk but possess spin-momentum locked metallic surface states protected by time-reversal symmetry. The existence of these surface states has been confirmed by angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). Detecting these surface states by transport measurement, which might at first appear to be the most direct avenue, was shown to be much more challenging than expected. Here, we report a detailed electronic transport study in high quality Bi2Se3 topological insulator thin films. Measurements under in-plane magnetic field, along and perpendicular to the bias current show opposite magnetoresistance. We argue that this contrasting behavior is related to the locking of the spin and current direction providing evidence for helical spin structure of the topological surface states.
Through a thorough magneto-transport study of antiferromagnetic topological insulator MnBi2Te4 (MBT) thick films, a positive linear magnetoresistance (LMR) with a two-dimensional (2D) character is found in high perpendicular magnetic fields and temperatures up to at least 260 K. The nonlinear Hall effect further reveals the existence of high-mobility surface states in addition to the bulk states in MBT. We ascribe the 2D LMR to the high-mobility surface states of MBT, thus unveiling a transport signature of surface states in thick MBT films. A suppression of LMR near the Neel temperature of MBT is also noticed, which might suggest the gap opening of surface states due to the paramagnetic-antiferromagnetic phase transition of MBT. Besides these, the failure of the disorder and quantum LMR model in explaining the observed LMR indicates new physics must be invoked to understand this phenomenon.
Several recent experiments on three-dimensional topological insulators claim to observe a large charge current-induced non-equilibrium ensemble spin polarization of electrons in the helical surface state. We present a comprehensive criticism of such claims, using both theory and experiment: First, we clarify the interpretation of quantities extracted from these measurements by deriving standard expressions from a Boltzmann transport equation approach in the relaxation-time approximation at zero and finite temperature to emphasize our assertion that, despite high in-plane spin projection, obtainable current-induced ensemble spin polarization is minuscule. Second, we use a simple experiment to demonstrate that magnetic field-dependent open-circuit voltage hysteresis (identical to those attributed to current-induced spin polarization in topological insulator surface states) can be generated in analogous devices where current is driven through thin films of a topologically-trivial metal. This result *ipso facto* discredits the naive interpretation of previous experiments with TIs, which were used to claim observation of helicity, i.e. spin-momentum locking in the topologically-protected surface state.
Topological insulator is composed of an insulating bulk state and time reversal symmetry protected two-dimensional surface states. One of the characteristics of the surface states is the locking between electron momentum and spin orientation. Here, we report a novel in-plane anisotropic magnetoresistance in topological insulator Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures. To explain the novel effect, we propose that the Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructure forms a spin-valve or Giant magnetoresistance device due to spin-momentum locking. The novel in-plane anisotropic magnetoresistance can be explained as a Giant magnetoresistance effect of the Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures.
Large unsaturated magnetoresistance (XMR) with magnitude about 1000% is observed in topological insulator candidate TaSe3 from our high field (up to 38 T) measurements. Two oscillation modes, associated with one hole pocket and two electron pockets in the bulk, respectively, are detected from our Shubnikov-de Hass (SdH) measurements, consistent with our first-principles calculations. With the detailed Hall measurements performed, our two-band model analysis exhibits an imperfect density ratio n_h/n_e closing 0.9 at T< 20 K , which suggests that the carrier compensations account for the XMR in TaSe3.
We report that the finite thickness of three-dimensional topological insulator (TI) thin films produces an observable magnetoresistance (MR) in phase coherent transport in parallel magnetic fields. The MR data of Bi2Se3 and (Bi,Sb)2Te3 thin films are compared with existing theoretical models of parallel field magnetotransport. We conclude that the TI thin films bring parallel field transport into a unique regime in which the coupling of surface states to bulk and to opposite surfaces is indispensable for understanding the observed MR. The {beta} parameter extracted from parallel field MR can in principle provide a figure of merit for searching TI compounds with more insulating bulk than existing materials.