Topological insulators have been successfully identified by spin-resolved photoemission but the spin polarization remained low (~20%). We show for Bi2Te3 that the in-gap surface state is much closer to full spin polarization with measured values reaching 80% at the Fermi level. When hybridizing with the bulk it remains highly spin polarized which may explain recent unusual quantum interference results on Bi2Se3. The topological surface state shows a large circular dichroism in the photoelectron angle distribution with an asymmetry of ~20% the sign of which corresponds to that of the measured spin.
Circular dichroism (CD) observed by photoemission, being sensitive to the orbital and spin angular momenta of the electronic states, is a powerful probe of the nontrivial surface states of topological insulators, but the experimental results thus far have eluded a comprehensive description. We report a study of Bi2Te3 films with thicknesses ranging from one quintuple layer (two-dimensional limit) to twelve layers (bulk limit) over a wide range of incident photon energy. The data show complex variations in magnitude and sign reversals, which are nevertheless well described by a theoretical calculation including all three photoemission mechanisms: dipole transition, surface photoemission, and spin-orbit coupling. The results establish the nontrivial connection between the spin-orbit texture and CD.
Topological insulators(1-8) are a novel form of matter which features metallic surface states with quasirelativistic dispersion similar to graphene(9). Unlike graphene, the locking of spin and momentum and the protection by time-reversal symmetry(1-8) open up tremendous additional possibilities for external control of transport properties(10-18). Here we show by angle-resolved photoelectron spectroscopy that the topological sur-face states of Bi2Te3 and Bi2Se3 are stable against the deposition of Fe without opening a band gap. This stability extends to low submonolayer coverages meaning that the band gap reported recently(19) for Fe on Bi2Se3 is incorrect as well as to complete monolayers meaning that topological surface states can very well exist at interfaces with ferromagnets in future devices.
The helical Dirac fermions at the surface of topological insulators show a strong circular dichroism which has been explained as being due to either the initial-state spin angular momentum, the initial-state orbital angular momentum, or the handedness of the experimental setup. All of these interpretations conflict with our data from Bi2Te3 which depend on the photon energy and show several sign changes. Our one-step photoemission calculations coupled to ab initio theory confirm the sign change and assign the dichroism to a final-state effect. The spin polarization of the photoelectrons, instead, remains a reliable probe for the spin in the initial state.
Gapless surface states on topological insulators are protected from elastic scattering on non-magnetic impurities which makes them promising candidates for low-power electronic applications. However, for wide-spread applications, these states should remain coherent and significantly spin polarized at ambient temperatures. Here, we studied the coherence and spin-structure of the topological states on the surface of a model topological insulator, Bi2Se3, at elevated temperatures in spin and angle-resolved photoemission spectroscopy. We found an extremely weak broadening and essentially no decay of spin polarization of the topological surface state up to room temperature. Our results demonstrate that the topological states on surfaces of topological insulators could serve as a basis for room temperature electronic devices.
Topological insulators are a new phase of matter that exhibits exotic surface electronic properties. Determining the spin texture of this class of material is of paramount importance for both fundamental understanding of its topological order and future spin-based applications. In this article, we review the recent experimental and theoretical studies on the differential coupling of left- versus right-circularly polarized light to the topological surface states in angle-resolved photoemission spectroscopy. These studies have shown that the polarization of light and the experimental geometry plays a very important role in both photocurrent intensity and spin polarization of photoelectrons emitted from the topological surface states. A general photoemission matrix element calculation with spin-orbit coupling can quantitatively explain the observations and is also applicable to topologically trivial systems. These experimental and theoretical investigations suggest that optical excitation with circularly polarized light is a promising route towards mapping the spin-orbit texture and manipulating the spin orientation in topological and other spin-orbit coupled materials.
M. R. Scholz
,J. Sanchez-Barriga
,D. Marchenko
.
(2011)
.
"High spin polarization and circular dichroism of topological surface states on Bi2Te3"
.
Markus Scholz
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا