Do you want to publish a course? Click here

Silicate features in Galactic and extragalactic post-AGB discs

104   0   0.0 ( 0 )
 Added by Clio Gielen
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. In this paper we study the Spitzer and TIMMI2 infrared spectra of post-AGB disc sources, both in the Galaxy and the LMC. Using the observed infrared spectra we determine the mineralogy and dust parameters of the discs, and look for possible differences between the Galactic and extragalactic sources. Methods. Modelling the full spectral range observed allows us to determine the dust species present in the disc and different physical parameters such as grain sizes, dust abundance ratios, and the dust and continuum temperatures. Results. We find that all the discs are dominated by emission features of crystalline and amorphous silicate dust. Only a few sample sources show features due to CO2 gas or carbonaceous molecules such as PAHs and C60 fullerenes. Our analysis shows that dust grain processing in these discs is strong, resulting in large average grain sizes and a very high crystallinity fraction. However, we do not find any correlations between the derived dust parameters and properties of the central source. There also does not seem to be a noticeable difference between the mineralogy of the Galactic and LMC sources. Even though the observed spectra are very similar to those of protoplanetary discs around young stars, showing similar mineralogy and strong grain processing, we do find evidence for differences in the physical and chemical processes of the dust processing.



rate research

Read More

Post-asymptotic giant branch (post-AGB) stars with discs are all binaries. Many of these binaries have orbital periods between 100 and 1000 days so cannot have avoided mass transfer between the AGB star and its companion, likely through a common-envelope type interaction. We report on preliminary results of our project to model circumbinary discs around post-AGB stars using our binary population synthesis code binary_c. We combine a simple analytic thin-disc model with binary stellar evolution to estimate the impact of the disc on the binary, and vice versa, fast enough that we can model stellar populations and hence explore the rather uncertain parameter space involved with disc formation. We find that, provided the discs form with sufficient mass and angular momentum, and have an inner edge that is relatively close to the binary, they can both prolong the life of their parent post-AGB star and pump the eccentricity of orbits of their inner binaries.
We present the results of our search for low- and intermediate mass evolved stars in the outer Galaxy using AllWISE catalogue photometry. We show that the [3.4]-[12] versus [4.6]-[22] colour-colour diagram is most suitable for separating C-rich/O-rich AGB and post- AGB star candidates. We are able to select 2,510 AGB and 24,821 post-AGB star candidates. However, the latter are severely mixed with the known young stellar objects in this diagram.
Recently, we have discovered an error in our Monte-Carlo spectral fitting routine, more specifically where the errors on the fluxes were rescaled to get a reduced chi2 of 1. The rescaled errors were too big, resulting in too wide a range of good fits in our 100 step Monte-Carlo routine. This problem affects Figs. 7-9 and Tables A.1, A.2 in Gielen et al. (2008), Table 3 in Gielen et al. (2009a), and Table 4 in Gielen et al. (2009b). We corrected for this error and present the new values and errors in the tables below. The new values and errors nearly all fall within the old error range. Our best chi2 values and overall former scientific results are not affected. With these new errors some possible new trends in the dust parameters might be observed. These will be discussed in an upcoming paper where we extend the sample presented in Gielen et al. (2008) with newly obtained SPITZER-IRS data.
In this contribution we give a progress report on our systematic study of a large sample of post-AGB stars. The sample stars were selected on the basis of their infrared colours and the selection criteria were tuned to discover objects with hot dust in the system. We started a very extensive, multi-wavelength programme which includes the analysis of our radial velocity monitoring; our optical high-resolution spectra; our groundbased N-band spectral data as well as the Spitzer full spectral scans; the broad-band SED and the high spatial-resolution interferometric experiments with the VLTI. In this contribution we highlight the main results obtained so far and argue that all systems in our sample are indeed binaries, which are surrounded by dusty Keplerian circumbinary discs. The discs play a lead role in the evolution of the systems.
81 - Howard E. Bond 2021
We report the discovery of a luminous yellow post-asymptotic-giant-branch (PAGB) star in the globular cluster (GC) M19 (NGC 6273), identified during our uBVI survey of Galactic GCs. The uBVI photometric system is optimized to detect stars with large Balmer discontinuities, indicating very low surface gravities and high luminosities. The spectral-energy distribution (SED) of the star is consistent with an effective temperature of about 6250 K and a surface gravity of $log g=0.5$. We use Gaia data to show that the stars proper motion and radial velocity are consistent with cluster membership. One aim of our program is to test yellow PAGB stars as candidate Population II standard candles for determining extragalactic distances. We derive a visual absolute magnitude of $M_V=-3.39pm0.09$ for the M19 star. This is in close agreement with the $M_V$ values found for yellow PAGB stars in the GCs omega Cen, NGC 5986, and M79, indicating a very narrow luminosity function. These objects are four magnitudes brighter than RR Lyrae variables, and they can largely avoid the issues of interstellar extinction that are a problem for Population I distance indicators. We also identified a second luminous PAGB object in M19, this one a hotter UV-bright star. Its SED is consistent with an effective temperature of about 11,750 K and $log g=2.0$. The two objects have nearly identical bolometric luminosities, $log L/L_odot=3.24$ and 3.22, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا