No Arabic abstract
Aims: We carried out high-resolution spectroscopy and BV(I)_C photometric monitoring of the two fastest late-type rotators in the nearby Beta Pictoris moving group, HD199143 (F7V) and CD-641208 (K7V). The motivation for this work is to investigate the rotation periods and photospheric spot patterns of these very young stars, with a longer term view to probing the evolution of rotation and magnetic activity during the early phases of main-sequence evolution. We also aim to derive information on key physical parameters, such as rotational velocity and rotation period. Methods: We applied maximum entropy (ME) and Tikhonov regularizing (TR) criteria to derive the surface spot map distributions of the optical modulation observed in HD199143 (F7 V) and CD-641208 (K7V). We also used cross-correlation techniques to determine stellar parameters such as radial velocities and rotational velocities. Lomb-Scargle periodograms were used to obtain the rotational periods from differential magnitude time series. Results: We find periods and inclinations of 0.356 days and 21.5deg for HD199143, and 0.355 days and 50.1deg for CD-641208. The spot maps of HD199143 obtained from the ME and TR methods are very similar, although the latter gives a smoother distribution of the filling factor. Maps obtained at two different epochs three weeks apart show a remarkable increase in spot coverage amounting to ~7% of the surface of the photosphere over a time period of only ~20 days. The spot maps of CD-641208 from the two methods show good longitudinal agreement, whereas the latitude range of the spots is extended to cover the whole visible hemisphere in the TR map. The distributions obtained from the first light curve of HD199143 show the presence of an extended and asymmetric active longitude with the maximum filling factor at longitude ~325degree.
We report angular diameters of HIP 560 and 21547, two F spectral type pre-main sequence members of the beta Pic Moving Group. We used the East-West 314-m long baseline of the CHARA Array. The measured limb-darkened angular diameters of HIP 560 and 21547 are 0.492+-0.032 and 0.518+-0.009 mas, respectively. The corresponding stellar radii are 2.1 and 1.6 Rsun for HIP 560 and HIP 21547 respectively. These values indicate that the stars are truly young. Analyses using the evolutionary tracks calculated by Siess, Dufour, and Forestini and the tracks of the Yonsei-Yale group yield consistent results. Analyzing the measurements on an angular diameter vs color diagram we find that the ages of the two stars are indistinguishable; their average value is 13+-2 MY. The masses of HIP 560 and 21547 are 1.65+-0.02 and 1.75+-0.05 Msun, respectively. However, analysis of the stellar parameters on a Hertzsprung-Russell Diagram yields ages at least 5 MY older. Both stars are rapid rotators. The discrepancy between the two types of analyses has a natural explanation in gravitational darkening.
We model the detectability of exoplanets around stars in the Beta Pic Moving Group (BPMG) using the Gemini Planet Imager (GPI), a coronagraphic instrument designed to detect companions by imaging. Members of the BPMG are considered promising targets for exoplanet searches because of their youth (~12 MY) and proximity (median distance ~35 pc). We wrote a modeling procedure to generate hypothetical companions of given mass, age, eccentricity, and semi-major axis, and place them around BPMG members that fall within the V-band range of the GPI. We count as possible detections companions lying within the GPIs field of view and H-band fluxes that have a host-companion flux ratio placing them within its sensitivity. The fraction of companions that could be detected depends on their brightness at 12 Myr, and hence formation mechanism, and on their distribution of semi-major axes. We used brightness models for formation by disk instability and core-accretion. We considered the two extreme cases of the semi-major axis distribution - the log-normal distribution of the nearby F and G type stars and a power-law distribution indicated by the exoplanets detected by the radial velocity technique. We find that the GPI could detect exoplanets of all the F and G spectral type stars in the BPMG sample with a probability that depends on the brightness model and semi-major axis distribution. At spectral type K to M1, exoplanet detectability depends on brightness and hence distance of the host star. GPI will be able to detect the companions of M stars later than M1 only if they are closer than 10 pc. Of the four A stars in BPMG sample, only one has V-band brightness in the range of GPI; the others are too bright.
Jeffries & Binks (2014) and Malo et al. (2014) have recently reported Li depletion boundary (LDB) ages for the {beta} Pictoris moving group (BPMG) which are twice as old as the oft-cited kinematic age of $sim$12 Myr. In this study we present (1) a new evaluation of the internal kinematics of the BPMG using the revised Hipparcos astrometry and best available published radial velocities, and assess whether a useful kinematic age can be derived, and (2) derive an isochronal age based on the placement of the A-, F- and G-type stars in the colour-magnitude diagram (CMD). We explore the kinematics of the BPMG looking at velocity trends along Galactic axes, and conducting traceback analyses assuming linear trajectories, epicyclic orbit approximation, and orbit integration using a realistic gravitational potential. None of the methodologies yield a kinematic age with small uncertainties using modern velocity data. Expansion in the Galactic X and Y directions is significant only at the 1.7{sigma} and 2.7{sigma} levels, and together yields an overall kinematic age with a wide range (13-58 Myr; 95 per cent CL). The A-type members are all on the zero age-main-sequence, suggestive of an age of $>$20Myr, and the loci of the CMD positions for the late-F- and G-type pre-main-sequence BPMG members have a median isochronal age of 22 Myr ($pm$ 3 Myr stat., $pm$ 1 Myr sys.) when considering four sets of modern theoretical isochrones. The results from recent LDB and isochronal age analyses are now in agreement with a median BPMG age of 23 $pm$ 3 Myr (overall 1{sigma} uncertainty, including $pm$2 Myr statistical and $pm$2 Myr systematic uncertainties).
Only 20% of old field stars have detectable debris discs, leaving open the question of what disc, if any, is present around the remaining 80%. Young moving groups allow to probe this population, since discs are expected to have been brighter early on. This paper considers the population of F~stars in the 23~Myr-old BPMG where we find that 9/12 targets possess discs. We also analyse archival ALMA data to derive radii for 4 of the discs, presenting the first image of the 63au radius disc of HD~164249. Comparing the BPMG results to disc samples from $sim45$~Myr and $sim150$~Myr-old moving~groups, and to discs found around field stars, we find the disc incidence rate in young moving~groups is comparable to that of the BPMG and significantly higher than that of field~stars. The BPMG discs tend to be smaller than those around field~stars. However, this difference is not statistically significant due to the small number of targets. Yet, by analysing the fractional luminosity vs disc radius parameter space we find that the fractional luminosities in the populations considered drop by two orders of magnitude within the first 100~Myr. This is much faster than expected by collisional evolution, implying a decay equivalent to $1/text{age}^2$. We attribute this depletion to embedded planets which would be around 170~$M_text{earth}$ to cause a depletion on the appropriate timescale. However, we cannot rule out that different birth environments of nearby young clusters result in brighter debris discs than the progenitors of field~stars which likely formed in a more dense environment.
Analyzing Spitzer and Herschel archival measurements we identified a debris disk around the young K7/M0 star CP-72 2713. The system belongs to the 24Myr old $beta$ Pic moving group. Our new 1.33mm continuum observation, obtained with the ALMA 7-m array, revealed an extended dust disk with a peak radius of 140au, probably tracing the location of the planetesimal belt in the system. The disk is outstandingly large compared to known spatially resolved debris disks and also to protoplanetary disks around stars of comparable masses. The dynamical excitation of the belt at this radius is found to be reconcilable with planetary stirring, while self-stirring by large planetesimals embedded in the belt can work only if these bodies form very rapidly, e.g. via pebble concentration. By analyzing the spectral energy distribution we derived a characteristic dust temperature of 43K and a fractional luminosity of 1.1$times$10$^{-3}$. The latter value is prominently high, we know only four other similarly dust-rich Kuiper-belt analogs within 40pc of the Sun.