Do you want to publish a course? Click here

Theory of the ground state spin of the NV- center in diamond: I. Fine structure, hyperfine structure, and interactions with electric, magnetic and strain fields

252   0   0.0 ( 0 )
 Added by Marcus Doherty
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ground state spin of the negatively charged nitrogen-vacancy center in diamond has been the platform for the recent rapid expansion of new frontiers in quantum metrology and solid state quantum information processing. In ambient conditions, the spin has been demonstrated to be a high precision magnetic and electric field sensor as well as a solid state qubit capable of coupling with nearby nuclear and electronic spins. However, in spite of its many outstanding demonstrations, the theory of the spin has not yet been fully developed and there does not currently exist thorough explanations for many of its properties, such as the anisotropy of the electron g-factor and the existence of Stark effects and strain splittings. In this work, the theory of the ground state spin is fully developed for the first time using the molecular orbital theory of the center in order to provide detailed explanations for the spins fine and hyperfine structures and its interactions with electric, magnetic and strain fields.



rate research

Read More

The ground state spin of the negatively charged nitrogen-vacancy center in diamond has many exciting applications in quantum metrology and solid state quantum information processing, including magnetometry, electrometry, quantum memory and quantum optical networks. Each of these applications involve the interaction of the spin with some configuration of electric, magnetic and strain fields, however, to date there does not exist a detailed model of the spins interactions with such fields, nor an understanding of how the fields influence the time-evolution of the spin and its relaxation and inhomogeneous dephasing. In this work, a general solution is obtained for the spin in any given electric-magnetic-strain field configuration for the first time, and the influence of the fields on the evolution of the spin is examined. Thus, this work provides the essential theoretical tools for the precise control and modeling of this remarkable spin in its current and future applications.
Optical and microwave double resonance techniques are used to obtain the excited state structure of single nitrogen-vacancy centers in diamond. The excited state is an orbital doublet and it is shown that it can be split and associated transition strengths varied by external electric fields and by strain. A group theoretical model is developed. It gives a good account of the observations and contributes to an improved understanding of the electronic structure of the center. The findings are important for quantum information processing and other applications of the center.
The nitrogen-vacancy (NV) center in diamond is a widely-utilized system due to its useful quantum properties. Almost all research focuses on the negative charge state (NV$^-$) and comparatively little is understood about the neutral charge state (NV$^0$). This is surprising as the charge state often fluctuates between NV$^0$, and NV$^-$, during measurements. There are potentially under utilized technical applications that could take advantage of NV$^0$, either by improving the performance of NV$^-$, or utilizing NV$^0$, directly. However, the fine-structure of NV$^0$, has not been observed. Here, we rectify this lack of knowledge by performing magnetic circular dichroism (MCD) measurements that quantitatively determine the fine-structure of NV$^0$. The observed behavior is accurately described by spin-Hamiltonians in the ground and excited states with the ground state yielding a spin-orbit coupling of $lambda = 2.24 pm 0.05$ GHz and a orbital $g-$factor of $0.0186 pm 0.0005$. The reasons why this fine-structure has not been previously measured are discussed and strain-broadening is concluded to be the likely reason
The negatively charged nitrogen-vacancy (NV-) center in diamond has realized new frontiers in quantum technology. Here, the centers optical and spin resonances are observed under hydrostatic pressures up to 60 GPa. Our observations motivate powerful new techniques to measure pressure and image high pressure magnetic and electric phenomena. Our observations further reveal a fundamental inadequacy of the current model of the center and provide new insight into its electronic structure.
Significant attention has been recently focused on the realization of high precision nano-thermometry using the spin-resonance temperature shift of the negatively charged nitrogen-vacancy (NV-) center in diamond. However, the precise physical origins of the temperature shift is yet to be understood. Here, the shifts of the centers optical and spin resonances are observed and a model is developed that identifies the origin of each shift to be a combination of thermal expansion and electron-phonon interactions. Our results provide new insight into the centers vibronic properties and reveal implications for NV- thermometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا