We discuss a new numerical schema for solving the initial value problem for the Korteweg-de Vries equation for large times. Our approach is based upon the Inverse Scattering Transform that reduces the problem to calculating the reflection coefficient of the corresponding Schrodinger equation. Using a step-like approximation of the initial profile and a fragmentation principle for the scattering data, we obtain an explicit recursion formula for computing the reflection coefficient, yielding a high resolution KdV solver. We also discuss some generalizations of this algorithm and how it might be improved by using Haar and other wavelets.
Original Whithams method of derivation of modulation equations is applied to systems whose dynamics is described by a perturbed Korteweg-de Vries equation. Two situations are distinguished: (i) the perturbation leads to appearance of right-hand sides in the modulation equations so that they become non-uniform; (ii) the perturbation leads to modification of the matrix of Whitham velocities. General form of Whitham modulation equations is obtained for each case. The essential difference between them is illustrated by an example of so-called `generalized Korteweg-de Vries equation. Method of finding steady-state solutions of perturbed Whitham equations in the case of dissipative perturbations is considered.
In this paper we consider two numerical scheme based on trapezoidal rule in time for the linearized KdV equation in one space dimension. The goal is to derive some suitable artificial boundary conditions for these two full discretization using Z-transformation. We give some numerical benchmark examples from the literature to illustrate our findings.
The fact that the Korteweg-de-Vries equation offers a good approximation of long-wave solutions of small amplitude to the one-dimensional Gross-Pitaevskii equation was derived several years ago in the physical literature. In this paper, we provide a rigorous proof of this fact, and compute a precise estimate for the error term. Our proof relies on the integrability of both the equations. In particular, we give a relation between the invariants of the two equations, which, we hope, is of independent interest.
Using Levi-Civitas theory of ideal fluids, we derive the complex Korteweg-de Vries (KdV) equation, describing the complex velocity of a shallow fluid up to first order. We use perturbation theory, and the long wave, slowly varying velocity approximations for shallow water. The complex KdV equation describes the nontrivial dynamics of all water particles from the surface to the bottom of the water layer. A crucial new step made in our work is the proof that a natural consequence of the complex KdV theory is that the wave elevation is described by the real KdV equation. The complex KdV approach in the theory of shallow fluids is thus more fundamental than the one based on the real KdV equation. We demonstrate how it allows direct calculation of the particle trajectories at any point of the fluid, and that these results agree well with numerical simulations of other authors.
Considering the Cauchy problem for the Korteweg-de Vries-Burgers equation begin{eqnarray*} u_t+u_{xxx}+epsilon |partial_x|^{2alpha}u+(u^2)_x=0, u(0)=phi, end{eqnarray*} where $0<epsilon,alphaleq 1$ and $u$ is a real-valued function, we show that it is globally well-posed in $H^s (s>s_alpha)$, and uniformly globally well-posed in $H^s (s>-3/4)$ for all $epsilon in (0,1)$. Moreover, we prove that for any $T>0$, its solution converges in $C([0,T]; H^s)$ to that of the KdV equation if $epsilon$ tends to 0.
Jason Baggett
,Odile Bastille
,Alexei Rybkin
.
(2011)
.
"A Haar-type Approximation and a New Numerical Schema for the Korteweg-de Vries Equation"
.
Jason Baggett
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا