Do you want to publish a course? Click here

Two-Dimensional Propagation of a Photoinduced Spin Wave Packet

130   0   0.0 ( 0 )
 Added by Yuki Terui
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the two-dimensional propagation of photoinduced spin wave packets in Bi-doped rare-earth iron garnet. Spin waves were excited nonthermally and impulsively by a circularly polarized light pulse via the inverse Faraday effect. Space- and time resolved spin waves were detected with a magneto-optical pump-probe technique. We investigated propagation in two directions, parallel and perpendicular to the magnetic field. Backward volume magnetostatic waves (BVMSWs) were detected in both directions. The frequency of BVMSWs depends on the propagation direction. The experimental results agreed well with the dispersion relation of BVMSWs.



rate research

Read More

We study the optically induced spin polarization, spin dephasing and diffusion in several high-mobility two-dimensional electron systems, which are embedded in GaAs quantum wells grown on (110)-oriented substrates. The experimental techniques comprise a two-beam magneto-optical spectroscopy system and polarization-resolved photoluminescence. Under weak excitation conditions at liquid-helium temperatures, we observe spin lifetimes above 100 ns in one of our samples, which are reduced with increasing excitation density due to additional, hole-mediated, spin dephasing. The spin dynamic is strongly influenced by the carrier density and the ionization of remote donors, which can be controlled by temperature and above-barrier illumination. The absolute value of the average electron spin polarization in the samples is directly observable in the circular polarization of photoluminescence collected under circularly polarized excitation and reaches values of about 5 percent. Spin diffusion is studied by varying the distance between pump and probe beams in micro-spectroscopy experiments. We observe diffusion lengths above 100 $mu$m and, at high excitation intensity, a nonmonotonic dependence of the spin polarization on the pump-probe distance.
Transmission of microwave spin waves through a microstructured magnonic crystal in the form of a permalloy waveguide of a periodically varying width was studied experimentally and theoretically. The spin wave characteristics were measured by spatially-resolved Brillouin light scattering microscopy. A rejection frequency band was clearly observed. The band gap frequency was controlled by the applied magnetic field. The measured spin-wave intensity as a function of frequency and propagation distance is in good agreement with a model calculation.
We have studied spin dephasing and spin diffusion in a high-mobility two-dimensional electron system, embedded in a GaAs/AlGaAs quantum well grown in the [110] direction, by a two-beam Hanle experiment. For very low excitation density, we observe spin lifetimes of more than 16 ns, which rapidly decrease as the pump intensity is increased. Two mechanisms contribute to this decrease: the optical excitation produces holes, which lead to a decay of electron spin via the Bir-Aranov-Pikus mechanism and recombination with spin-polarized electrons. By scanning the distance between the pump and probe beams, we observe the diffusion of spin-polarized electrons over more than 20 microns. For high pump intensity, the spin polarization in a distance of several microns from the pump beam is larger than at the pump spot, due to the reduced influence of photogenerated holes.
We theoretically investigate photoinduced phenomena induced by time-periodic driving fields in two-dimensional electron gases under perpendicular magnetic fields with Rashba spin-orbit coupling. Using perturbation theory, we provide analytical results for the Floquet-Landau energy spectrum appearing due to THz radiation. By employing the resulting photo-modulated states, we compute the dynamical evolution of the spin polarization function for an initially prepared coherent state. We find that the interplay of the magnetic field, Rashba spin-orbit interaction and THz radiation can lead to inversion of the spin polarization. The dynamics also induces fractional revivals and non-trivial beating patterns in the autocorrelation function due to interference of the photo-modulated quantum states. We also calculate the transverse photo-assisted conductivity in the linear response regime using Kubo formalism and analyze the impact of the radiation field and Rashba spin-orbit interaction. In the static limit, we find that our results reduce to well-known expressions of the conductivity in non-relativistic and quasi-relativistic (topological insulator surfaces) two-dimensional electron gas thoroughly described in the literature. We discuss the possible experimental detection of our theoretical prediction and their relevance for spin-orbit physics at high magnetic fields.
We reveal the generic characteristics of wave packet delocalization in two-dimensional nonlinear disordered lattices by performing extensive numerical simulations in two basic disordered models: the Klein-Gordon system and the discrete nonlinear Schr{o}dinger equation. We find that in both models (a) the wave packets second moment asymptotically evolves as $t^{a_m}$ with $a_m approx 1/5$ ($1/3$) for the weak (strong) chaos dynamical regime, in agreement with previous theoretical predictions [S.~Flach, Chem.~Phys.~{bf 375}, 548 (2010)], (b) chaos persists, but its strength decreases in time $t$ since the finite time maximum Lyapunov exponent $Lambda$ decays as $Lambda propto t^{alpha_{Lambda}}$, with $alpha_{Lambda} approx -0.37$ ($-0.46$) for the weak (strong) chaos case, and (c) the deviation vector distributions show the wandering of localized chaotic seeds in the lattices excited part, which induces the wave packets thermalization. We also propose a dimension-independent scaling between the wave packets spreading and chaoticity, which allows the prediction of the obtained $alpha_{Lambda}$ values.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا