Do you want to publish a course? Click here

The Peculiar Chemical Inventory of NGC 2419 -- An Extreme Outer Halo Globular Cluster

135   0   0.0 ( 0 )
 Added by Judith G. Cohen
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

NGC 2419 is a massive outer halo Galactic globular cluster whose stars have previously been shown to have somewhat peculiar abundance patterns. We have observed seven luminous giants that are members of NGC 2419 with Keck/HIRES at reasonable SNR. One of these giants is very peculiar, with an extremely low [Mg/Fe] and high [K/Fe] but normal abundances of most other elements. The abundance pattern does not match the nucleosynthetic yields of any supernova model. The other six stars show abundance ratios typical of inner halo Galactic globular clusters, represented here by a sample of giants in the nearby globular cluster M30. Although our measurements show that NGC 2419 is unusual in some respects, its bulk properties do not provide compelling evidence for a difference between inner and outer halo globular clusters.



rate research

Read More

NGC 2419 is a peculiar Galactic globular cluster in terms of size/luminosity, and chemical abundance anomalies. Here, we present Stromgren $uvby$ photometry of the cluster. Using the gravity- and metallicity-sensitive $c_1$ and $m_1$ indices, we identify a sample of likely cluster members extending well beyond the formal tidal radius with an estimated contamination by non-members of only 1%. We derive photometric [Fe/H] of red giants, and depending on which literature metallicity relation we use, find reasonable to excellent agreement with spectroscopic [Fe/H]. We demonstrate explicitly that the photometric errors are not Gaussian, and using a realistic model for the photometric uncertainties, find a formal internal [Fe/H] spread of $sigma=0.11^{+0.02}_{-0.01}$ dex. This is an upper limit to the clusters true [Fe/H] spread and may partially/entirely reflect the limited precision of the photometric metallicity estimation and systematic effects. The lack of correlation between spectroscopic and photometric [Fe/H] of individual stars is further evidence against a [Fe/H] spread on the 0.1 dex level. Finally, the CN-sensitive $delta_4$ anti-correlates strongly with Mg abundance, indicating that the 2nd generation stars are N-enriched. Absence of similar correlations in some other CN-sensitive indices supports the second generation being He-rich, which in these indices approximately compensates the shift due to CN. Compared to a single continuous distribution with finite dispersion, the observed $delta_4$ distribution is slightly better fit by two discrete populations, with the N-enhanced stars accounting for 53$pm$5%. NGC 2419 appears to be very similar to other metal-poor Galactic globular clusters with a similarly N-enhanced second generation and little or no variation in [Fe/H], which sets it apart from other suspected accreted nuclei such as {omega}Cen. (abridged)
203 - Eugenio Carretta 2013
Two independent studies recently uncovered two distinct populations among giants in the distant, massive globular cluster (GC) NGC 2419. One of these populations has normal magnesium (Mg) and potassium (K) abundances for halo stars: enhanced Mg and roughly solar K. The other population has extremely depleted Mg and very enhanced K. To better anchor the peculiar NGC 2419 chemical composition, we have investigated the behavior of K in a few red giant branch stars in NGC 6752, NGC 6121, NGC 1904, and omega Cen. To verify that the high K abundances are intrinsic and not due to some atmospheric features in giants, we also derived K abundances in less evolved turn-off and subgiant stars of clusters 47 Tuc, NGC 6752, NGC 6397, and NGC 7099. We normalized the K abundance as a function of the cluster metallicity using 21 field stars analyzed in a homogeneous manner. For all GCs of our sample, the stars lie in the K-Mg abundance plane on the same locus occupied by the Mg-normal population in NGC 2419 and by field stars. This holds both for giants and less evolved stars. At present, NGC 2419 seems unique among GCs.
Globular Clusters are among the oldest objects in the Galaxy, thus their researchers are key to understanding the processes of evolution and formation that the galaxy has experienced in early stages. Spectroscopic studies allow us to carry out detailed analyzes on the chemical composition of Globular Clusters. The aim of our research is to perform a detailed analysis of chemical abundances to a sample of stars of the Bulge Globular Cluster NGC 6553, in order to determine chemical patterns that allow us to appreciate the phenomenon of Multiple Population in one of the most metal-rich Globular Clusters in the Galaxy. This analysis is being carried out with data obtained by FLAMES/GIRAFFE spectrograph, VVV Survey and DR2 of Gaia Mission. We analyzed 20 Red Horizontal Branch Stars, being the first extensive spectroscopic abundance analysis for this cluster and measured 8 chemical elements (O, Na, Mg, Si, Ca, Ti, Cr and Ni), deriving a mean iron content of $[Fe/H] = -0.10pm0.01$ and a mean of $[alpha/Fe] = 0.21pm0.02$, considering Mg, Si, Ca and Ti (errors on the mean). We found a significant spread in the content of Na but a small or negligible in O. We did not find an intrinsic variation in the content of $alpha$ and iron-peak elements, showing a good agreement with the trend of the Bulge field stars, suggesting a similar origin and evolution.
169 - S. Perina 2012
We use deep, high quality colour magnitude diagrams obtained with the Hubble Space Telescope to compute a simplified version of the Mironov index [SMI; B/(B+R)] to parametrize the horizontal branch (HB) morphology for 23 globular clusters in the M31 galaxy (Sample-A), all located in the outer halo at projected distances between 10 kpc and 100 kpc. This allows us to compare them with their Galactic counterparts, for which we estimated the SMI exactly in the same way, in the SMI vs. [Fe/H] plane. We find that the majority of the considered M31 clusters lie in a significantly different locus, in this plane, with respect to Galactic clusters lying at any distance from the center of the Milky Way. In particular they have redder HB morphologies at a given metallicity, or, in other words, clusters with the same SMI value are ~0.4 dex more metal rich in the Milky Way than in M31. We discuss the possible origin of this difference and we conclude that the most likely explanation is that many globular clusters in the outer halo of M31 formed ~1-2 Gyr later than their counterparts in the outer halo of the Milky Way, while differences in the cluster-to-cluster distribution of He abundance of individual stars may also play a role. The analysis of another sample of 25 bright M31 clusters (eighteen of them with M_V<= -9.0, Sample-B), whose SMI estimates are much more uncertain as they are computed on shallow colour magnitude diagrams, suggests that extended blue HB tails can be relatively frequent among the most massive M31 globular clusters, possibly hinting at the presence of multiple populations.
We use a sample of newly-discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously-catalogued objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond ~30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا