Do you want to publish a course? Click here

Transiting exoplanets from the CoRoT space mission. XVIII. CoRoT-18b: a massive hot jupiter on a prograde, nearly aligned orbit

126   0   0.0 ( 0 )
 Added by Guillaume Hebrard
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of CoRoT-18b, a massive hot jupiter transiting in front of its host star with a period of 1.9000693 +/- 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric ground-based follow-up observations. The planet has a mass M_p = 3.47 +/- 0.38 M_Jup, a radius R_p = 1.31 +/- 0.18 R_Jup, and a density rho_p = 2.2 +/- 0.8 g/cm3. It orbits a G9V star with a mass M_* = 0.95 +/- 0.15 M_Sun, a radius R_* = 1.00 +/- 0.13 R_Sun, and a rotation period P_rot = 5.4 +/- 0.4 days. The age of the system remains uncertain, with stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possibly significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected the Rossiter-McLaughlin anomaly in the CoRoT-18 system thanks to the spectroscopic observation of a transit. We measured the obliquity psi = 20 +/- 20 degrees (sky-projected value: lambda = -10 +/- 20 degrees), indicating that the planet orbits in the same way as the star is rotating and that this prograde orbit is nearly aligned with the stellar equator.



rate research

Read More

The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K), with an orbital period of P=2.994329 +/- 0.000011 days and semi-major axis a=0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (vsini=40+/-5 km/s) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of mp=2.33+/-0.34 Mjup and radius rp=1.43+/-0.03 Rjup, the resulting mean density of CoRoT-11b (rho=0.99+/-0.15 g/cm^3) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 pm 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of Mp = 2.8 pm 0.3 MJup, a radius of Rpl = 1.05 pm 0.13 RJup, a density of approx 3 g cm-3. RV data also clearly reveal a non zero eccentricity of e = 0.16 pm 0.02. The planet orbits a mature G0 main sequence star of V =15.5 mag, with a mass Mstar = 1.14 pm 0.08 Modot, a radius Rstar = 1. 61 pm 0.18 Rodot and quasi-solar abundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the rather large stellar radius. The two features of a significant eccentricity of the orbit and of a fairly high density are fairly uncommon for a hot Jupiter. The high density is, however, consistent with a model of contraction of a planet at this mass, given the age of the system. On the other hand, at such an age, circularization is expected to be completed. In fact, we show that for this planetary mass and orbital distance, any initial eccentricity should not totally vanish after 7 Gyr, as long as the tidal quality factor Qp is more than a few 105, a value that is the lower bound of the usually expected range. Even if Corot-23b features a density and an eccentricity that are atypical of a hot Jupiter, it is thus not an enigmatic object.
Aims. The CoRoT space mission continues to photometrically monitor about 12 000 stars in its field-of-view for a series of target fields to search for transiting extrasolar planets ever since 2007. Deep transit signals can be detected quickly in the alarm-mode in parallel to the ongoing target field monitoring. CoRoTs first planets have been detected in this mode. Methods. The CoRoT raw lightcurves are filtered for orbital residuals, outliers, and low-frequency stellar signals. The phase folded lightcurve is used to fit the transit signal and derive the main planetary parameters. Radial velocity follow-up observations were initiated to secure the detection and to derive the planet mass. Results. We report the detection of CoRoT-5b, detected during observations of the LRa01 field, the first long-duration field in the galactic anticenter direction. CoRoT-5b is a hot Jupiter-type planet with a radius of 1.388(+0.046, -0.047) R_Jup, a mass of 0.467(+0.047, -0.024) M_Jup, and therefore, a mean density of 0.217(+0.031, -0.025) g cm-3. The planet orbits an F9V star of 14.0 mag in 4.0378962 +/- 0.0000019 days at an orbital distance of 0.04947(+0.00026, -0.00029) AU.
We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of $2.43pm0.30$Mjup and a radius of $1.02pm0.07$Rjup, while its mean density is $2.82pm0.38$ g/cm$^3$. CoRoT-17b is in a circular orbit with a period of $3.7681pm0.0003$ days. The host star is an old ($10.7pm1.0$ Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planets internal composition is not well constrained and can range from pure H/He to one that can contain $sim$380 earth masses of heavier elements.
In this paper, the CoRoT Exoplanet Science Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a mass of $7.6 pm 0.6$ Jupiter masses orbiting a solar-type star (F9V) with a period of only 1.5 d, less than 5 stellar radii from its parent star. It is unusual for such a massive planet to have such a small orbit: only one other known exoplanet with a higher mass orbits with a shorter period.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا