No Arabic abstract
The detection of pulsational frequencies in stellar photometry is required as input for asteroseismological modelling. The second short run (SRa02) of the CoRoT mission has provided photometric data of unprecedented quality and time-coverage for a number of O-type stars. We analyse the CoRoT data corresponding to three hot O-type stars, describing the properties of their light curves and we search for pulsational frequencies, which we then compare to theoretical model predictions. We determine the amplitude spectrum of the data, using the Lomb-Scargle and a multifrequency HMM-like technique. Frequencies are extracted by prewhitening, and their significance is evaluated under the assumption that the light curve is dominated by red noise. We search for harmonics, linear combinations and regular spacings among these frequencies. We use simulations with the same time sampling as the data as a powerful tool to judge the significance of our results. From the theoretical point of view, we use the MAD non-adiabatic pulsation code to determine the expected frequencies of excited modes. A substantial number of frequencies is listed, but none can be convincingly identified as being connected to pulsations. The amplitude spectrum is dominated by red noise. Theoretical modelling shows that all three O-type stars can have excited modes but the relation between the theoretical frequencies and the observed spectrum is not obvious. The dominant red noise component in the hot O-type stars studied here clearly points to a different origin than the pulsations seen in cooler O stars. The physical cause of this red noise is unclear, but we speculate on the possibility of sub-surface convection, granulation, or stellar wind inhomogeneities being responsible.
We present elemental abundance results from high resolution spectral analysis of three nitrogen-enhanced barium stars. The analysis is based on spectra obtained with the FEROS attached to 1.52m telescope at ESO, Chile. The spectral resolution is R~48000 and the spectral coverage spans from 3500-9000AA,. For the objects HD 51959 and HD 88035, we present the first time abundance analyses results. Although a few studies are available in literature on the object HD 121447, the results are significantly different from each other. We have therefore carried out a detailed chemical composition study for this object based on a high resolution spectrum with high S/N ratio, for a better understanding of the origin of the abundance patterns observed in this star. Stellar atmospheric parameters, the effective temperature, surface gravity, microturbulence and metallicity of the stars are determined from the LTE analysis using model atmospheres. The metallicity of HD 51959 and HD 88035 are found to be near-solar; they exhibit enhanced abundances of neutron-capture elements. HD 121447 is found to be moderately metal-poor with [Fe/H]=-0.65. While carbon is near-solar in the other two objects, HD 121447 shows carbon enhancement at a level, [C/Fe]=0.82. Neutron-capture elements are highly enhanced with [X/Fe]>2 (X: Ba, La, Pr, Nd, Sm) in this object. The alpha- and iron-peak elements show abundances very similar to field giants with the same metallicity. From kinematic analysis all the three objects are found to be members of thin disk population with a high probability of 0.99, 0.99 and 0.92 for HD 51959, HD 88035 and HD 121447 respectively.
We report two new dramatically dusty main sequence stars: HD 131488 (A1V) and HD 121191 (A8V). HD 131488 is found to have substantial amounts of dust in its terrestrial planet zone (L_IR/L_bol~4x10^-3), cooler dust further out in its planetary system, and an unusual mid-infrared spectral feature. HD 121191 shows terrestrial planet zone dust (L_IR/L_bol~2.3x10^-3), hints of cooler dust, and shares the unusual mid-infrared spectral shape identified in HD 131488. These two stars belong to sub-groups of the Scorpius-Centaurus OB association and have ages of ~10 Myr. HD 131488 and HD 121191 are the dustiest main sequence A-type stars currently known. Early-type stars that host substantial inner planetary system dust are thus far found only within the age range of 5-20 Myr.
It has also been suggested that the detection of a wealth of very low amplitude modes in Delta Sct stars was only a matter of signal--to--noise ratio. Access to this treasure, impossible from the ground, is one of the scientific aims of the space mission CoRoT, a space mission developed and operated by CNES. This work presents the results obtained on HD 50844: the 140,016 datapoints were analysed using independent approaches and several checks performed. A level of 10^{-5} mag was reached in the amplitude spectra of the CoRoT timeseries. The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0--30 d^{-1}. All the cross--checks confirmed this new result. The initial guess that Delta Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high--degree modes (up to ell=14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground--based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. Probably due to this unfavourable evolutionary status, no clear regular distribution is observed in the frequency set. The predominant term (f_1=6.92 d^{-1}) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data. This work is also based on observations made with ESO telescopes under the ESO Large Programme LP178.D-0361 and on data collected at the Observatorio de Sierra Nevada, at the Observatorio Astronomico Nacional San Pedro Martir, and at the Piszkesteto Mountain Station of Konkoly Observatory.
We report on the analysis of high-precision space-based photometry of the roAp (rapidly oscillating Ap) stars HD 9289, HD 99563, and HD134214. All three stars were observed by the MOST satellite for more than 25 days, allowing unprecedented views of their pulsation. We find previously unknown candidate frequencies in all three stars. We establish the rotation period of HD 9289 (8.5 d) for the first time and show that the star is pulsating in two modes that show different mode geometries. We present a detailed analysis of HD 99563s mode multiplet and find a new candidate frequency which appears independent of the previously known mode. Finally, we report on 11 detected pulsation frequencies in HD 134214, 9 of which were never before detected in photometry, and 3 of which are completely new detections. Thanks to the unprecedentedly small frequency uncertainties, the p-mode spectrum of HD 134214 can be seen to have a well-defined large frequency spacing similar to the well-studied roAp star HD 24712 (HR 1217).
OB stars are important constituents for the ecology of the Universe, and there are only a few studies on their pulsational properties detailed enough to provide important feedback on current evolutionary models. Our goal is to analyse and interpret the behaviour present in the CoRoT light curve of the B0.5 IV star HD 51756 observed during the second long run of the space mission, and to determine the fundamental stellar parameters from ground-based spectroscopy gathered with the CORALIE and HARPS instruments after checking for signs of variability and binarity, thus making a step further in mapping the top of the Beta Cep instability strip. We compare the newly obtained high-resolution spectra with synthetic spectra of late O-type and early B-type stars computed on a grid of stellar parameters. We match the results with evolutionary tracks to estimate stellar parameters. We use various time series analysis tools to explore the nature of the variations present in the light curve. Additional calculations are carried out based on distance and historical position measurements of the components to impose constraints on the binary orbit. We find that HD 51756 is a wide binary with both a slow (v sin i approx 28 km s^-1) and a fast (v sin i approx 170 km s^-1) early-B rotator whose atmospheric parameters are similar (T_eff approx 30000 K and log g approx 3.75). We are unable to detect pulsation in any of the components, and we interpret the harmonic structure in the frequency spectrum as sign of rotational modulation, which is compatible with the observed and deduced stellar parameters of both components. The non-detection of pulsation modes provides a feedback on the theoretical treatment, given that non-adiabatic computations applied to appropriate stellar models predict the excitation of both pressure and gravity modes for the fundamental parameters of this star.