No Arabic abstract
The study of how photosynthetic organisms convert light offers insight not only into natures evolutionary process, but may also give clues as to how best to design and manipulate artificial photosynthetic systems -- and also how far we can drive natural photosynthetic systems beyond normal operating conditions, so that they can harvest energy for us under otherwise extreme conditions. In addition to its interest from a basic scientific perspective, therefore, the goal to develop a deep quantitative understanding of photosynthesis offers the potential payoff of enhancing our current arsenal of alternative energy sources for the future. In the following Chapter, we consider the trade-off between dynamics, structure and function of light harvesting membranes in Rps. Photometricum purple bacteria, as a model to highlight the priorities that arise when photosynthetic organisms adapt to deal with the ever-changing natural environment conditions.
The natural habitats of microorganisms in the human microbiome and ocean and soil ecosystems are full of colloids and macromolecules, which impart non-Newtonian flow properties drastically affecting the locomotion of swimming microorganisms. Although the low-Reynolds-number hydrodynamics of the swimming of flagellated bacteria in simple Newtonian fluids has been well developed, our understanding of bacterial motility in complex non-Newtonian fluids is still primitive. Even after six decades of research, fundamental questions about the nature and origin of bacterial motility enhancement in polymer solutions are still under debate. Here, we study the motility of flagellated bacteria in colloidal suspensions of varying sizes and volume fractions. We find that bacteria in dilute colloidal suspensions display quantitatively the same motile behaviors as those in dilute polymer solutions, where a universal particle-size-dependent motility enhancement up to 80% is uncovered, accompanied by strong suppression of bacterial wobbling. By virtue of the well-controlled size and the hard-sphere nature of colloids, the finding not only resolves the long-standing controversy over bacterial motility enhancement in complex fluids but also challenges all the existing theories using polymer dynamics to address the swimming of flagellated bacteria in dilute polymer solutions. We further develop a simple physical model incorporating the colloidal nature of complex fluids, which quantitatively explains bacterial wobbling dynamics and mobility enhancement in both colloidal and polymeric fluids. Our study sheds light on the puzzling motile behaviors of bacteria in complex fluids relevant to a wide range of microbiological processes and provides a cornerstone in engineering bacterial swimming in complex environments.
The formation of quasi-spherical cages from protein building blocks is a remarkable self-assembly process in many natural systems, where a small number of elementary building blocks are assembled to build a highly symmetric icosahedral cage. In turn, this has inspired synthetic biologists to design de novo protein cages. We use simple models, on multiple scales, to investigate the self-assembly of a spherical cage, focusing on the regularity of the packing of protein-like objects on the surface. Using building blocks, which are able to pack with icosahedral symmetry, we examine how stable these highly symmetric structures are to perturbations that may arise from the interplay between flexibility of the interacting blocks and entropic effects. We find that, in the presence of those perturbations, icosahedral packing is not the most stable arrangement for a wide range of parameters; rather disordered structures are found to be the most stable. Our results suggest that (i) many designed, or even natural, protein cages may not be regular in the presence of those perturbations, and (ii) that optimizing those flexibilities can be a possible design strategy to obtain regular synthetic cages with full control over their surface properties.
Photosynthetic systems utilize adaptability to respond efficiently to fluctuations in their light environment. As a result, large photosynthetic yields can be achieved in conditions of low light intensity, while photoprotection mechanisms are activated in conditions of elevated light intensity. In sharp contrast with these observations, current theoretical models predict bacterial cell death for physiologically high light intensities. To resolve this discrepancy, we consider a unified framework to describe three stages of photosynthesis in natural conditions, namely light absorption, exciton transfer and charge separation dynamics, to investigate the relationship between the statistical features of thermal light and the Quinol production in bacterial photosynthesis. This approach allows us to identify a mechanism of photoprotection that relies on charge recombination facilitated by the photon bunching statistics characteristic of thermal sunlight. Our results suggest that the flexible design underpinning natural photosynthesis may therefore rely on exploiting the temporal correlations of thermal light, manifested in photo-bunching patterns, which are preserved for excitations reaching the reaction center.
Recent advances in topological mechanics have revealed unusual phenomena such as topologically protected floppy modes and states of self-stress that are exponentially localized at boundaries and interfaces of mechanical networks. In this paper, we explore the topological mechanics of epithelial tissues, where the appearance of these boundary and interface modes could lead to localized soft or stressed spots and play a role in morphogenesis. We consider both a simple vertex model (VM) governed by an effective elastic energy and its generalization to an active tension network (ATN) which incorporates active adaptation of the cytoskeleton. By analyzing spatially periodic lattices at the Maxwell point of mechanical instability, we find topologically polarized phases with exponential localization of floppy modes and states of self-stress in the ATN when cells are allowed to become concave, but not in the VM.
External control of the swimming speed of `active particles can be used to self assemble designer structures in situ on the micrometer to millimeter scale. We demonstrate such reconfigurable templated active self assembly in a fluid environment using light powered strains of Escherichia coli. The physics and biology controlling the sharpness and formation speed of patterns is investigated using a bespoke fast-responding strain.