Do you want to publish a course? Click here

Genus-1 Virasoro conjecture along quantum volume direction

254   0   0.0 ( 0 )
 Added by Xiaobo Liu
 Publication date 2011
  fields Physics
and research's language is English
 Authors Xiaobo Liu




Ask ChatGPT about the research

In this paper, we show that the derivative of the genus-1 Virasoro conjecture for Gromov-Witten invariants along the direction of quantum volume element holds for all smooth projective varieties. This result provides new evidence for the Virasoro conjecture.



rate research

Read More

213 - Xiaobo Liu , Xin Wang 2014
In this paper we prove that for Gromov-Witten theory of $P^1$ orbifolds of ADE type the genus-2 G-function introduced by B. Dubrovin, S. Liu, and Y. Zhang vanishes. Together with our results in [LW], this completely solves the main conjecture in their paper [DLZ]. In the process, we also found a sufficient condition for the vanishing of the genus-2 G-function which is weaker than the condition given in our previous paper [LW].
In this article we define stable supercurves and super stable maps of genus zero via labeled trees. We prove that the moduli space of stable supercurves and super stable maps of fixed tree type are quotient superorbifolds. To this end, we prove a slice theorem for the action of super Lie groups on Riemannian supermanifolds and discuss superorbifolds. Furthermore, we propose a Gromov topology on super stable maps such that the restriction to fixed tree type yields the quotient topology from the superorbifolds and the reduction is compact. This would, possibly, lead to the notions of super Gromov-Witten invariants and small super quantum cohomology to be discussed in sequels.
199 - Xiaobo Liu , Xin Wang 2013
In this paper we give some sufficient conditions for the vanishing of the genus-2 G-function, which was introduced by B. Dubrovin, S. Liu and Y. Zhang in [DLZ]. As a corollary we prove their conjecture for the vanishing of the genus-2 G-function for ADE singularities.
Let G be a simple complex algebraic group. We prove that the irregularity of the adjoint connection of an irregular flat G-bundle on the formal punctured disk is always greater than or equal to the rank of G. This can be considered as a geometric analogue of a conjecture of Gross and Reeder. We will also show that the irregular connections with minimum adjoint irregularity are precisely the (formal) Frenkel-Gross connections.
112 - Takashi Kimura , Xiaobo Liu 2011
In this paper, we give some new genus-3 universal equations for Gromov-Witten invariants of compact symplectic manifolds. These equations were obtained by studying new relations in the tautological ring of the moduli space of 2-pointed genus-3 stable curves. A byproduct of our search for genus-3 equations is a new genus-2 universal equation for Gromov-Witten invariants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا