Cooling atom-cavity systems into entangled states


Abstract in English

Generating entanglement by simply cooling a system into a stationary state which is highly entangled has many advantages. Schemes based on this idea are robust against parameter fluctuations, tolerate relatively large spontaneous decay rates, and achieve high fidelities independent of their initial state. A possible implementation of this idea in atom-cavity systems has recently been proposed by Kastoryano et al. [Phys. Rev. Lett. 106, 090502 (2011)]. Here we propose an improved entanglement cooling scheme for two atoms inside an optical cavity which achieves higher fidelities for comparable single-atom cooperativity parameters C. For example, we predict fidelities above 90% even for C as low as 20 without requiring individual laser addressing and without having to detect photons.

Download